XX=zeros(symbols_per_carrier,IFFT_bin_length+GI+GIP); for k=1:symbols_per_carrier; for i=1:IFFT_bin_length; XX(k,i+GI)=signal_after_IFFT(k,i); end for i=1:GI; XX(k,i)=signal_after_IFFT(k,i+IFFT_bin_length-GI);%添加循环前缀 end for j=1:GIP; XX(k,IFFT_bin_length+GI+j)=signal_after_IFFT(k,j);%添加循环后缀 end end time_wave_matrix_cp=XX
时间: 2023-06-27 11:08:16 浏览: 116
这段代码实现了将信号经过IFFT变换后,添加循环前缀和循环后缀,得到时域波形矩阵。其中,symbols_per_carrier代表载波数量,IFFT_bin_length代表每个载波的IFFT长度,GI代表循环前缀长度,GIP代表循环后缀长度。signal_after_IFFT是经过IFFT变换后的信号矩阵。代码中使用了三个循环,分别对应将IFFT变换后的信号添加循环前缀、添加循环后缀和将添加循环前缀后的信号存储在时域波形矩阵中。最终得到的时域波形矩阵为time_wave_matrix_cp。
相关问题
IFFT_modulation = zeros(symbols_per_carrier + 1, IFFT_bin_length); IFFT_modulation(:,carriers) = complex_carrier_matrix; IFFT_modulation(:,conjugate_carriers) = conj(complex_carrier_matrix);
这段代码的作用是将复数载波矩阵映射到IFFT变换的频域矩阵中。具体来说,假设有symbols_per_carrier个子载波,那么IFFT_bin_length就是整个频域矩阵的长度,包括了零频率分量和负频率分量。carriers是一个长度为symbols_per_carrier的向量,它表示需要映射到IFFT变换频域矩阵中的子载波位置。conjugate_carriers则是对应的共轭位置。
首先,将IFFT_modulation初始化为一个大小为(symbols_per_carrier + 1) x IFFT_bin_length的零矩阵。然后,将复数载波矩阵complex_carrier_matrix映射到IFFT_modulation矩阵的对应子载波位置carriers中,也就是将其赋值给IFFT_modulation矩阵的第carriers个列向量。接着,将复数载波矩阵的共轭值映射到IFFT_modulation矩阵的共轭子载波位置conjugate_carriers中,也就是将其赋值给IFFT_modulation矩阵的第conjugate_carriers个列向量的共轭值。最终,IFFT_modulation矩阵中的所有非零位置都被赋值为复数载波矩阵中对应位置的值和其共轭值的和。这个矩阵将用于进行IFFT变换,生成时域信号。
上面的代码rx_symbols_cp(:, :, i) = tx_symbols_cp * diag(channel(:, i));矩阵维度不一样
非常感谢您的指正,这个问题是我疏忽了。在代码中,tx_symbols_cp 是一个 (N+cp_len) × num_symbols 的矩阵,channel(:, i) 是一个 N × 1 的列向量,不能直接作为矩阵相乘的操作数。
可以通过将 channel(:, i) 转换为一个 N × N 的对角矩阵,然后进行元素对应相乘来实现 OFDM 符号和信道的乘积。具体地,可以使用 diag 函数将 channel(:, i) 转换为一个对角矩阵,然后使用 .* 运算符进行元素对应相乘。
以下是修改后的代码:
```matlab
%% OFDM 参数设置
N = 64; % 基带子载波数
cp_len = 16; % 循环前缀长度
num_frames = 100; % OFDM符号的数量
num_subframes = 10; % 子帧的数量
num_symbols = num_frames * num_subframes; % 符号总数
num_channels = 2; % 通道数
num_taps = 4; % 信道时延
SNR = 20; % 信噪比
%% 生成OFDM符号
tx_data = randi([0, 1], N, num_symbols);
tx_symbols = ifft(tx_data);
tx_symbols_cp = [tx_symbols((end-cp_len+1):end, :); tx_symbols];
%% 生成多普勒频移
doppler_freq = linspace(-150, 150, num_channels); % 多普勒频移范围
doppler_shift = exp(1j * 2 * pi * doppler_freq' / N); % 多普勒频移向量
%% 生成多普勒时延
time_delay = round(rand(num_channels, 1) * num_taps); % 随机生成时延
channel = zeros(N, num_channels);
for i = 1:num_channels
channel(:, i) = circshift(doppler_shift(i, :)', time_delay(i));
end
%% 发送OFDM符号
rx_symbols_cp = zeros(N+cp_len, num_symbols, num_channels);
for i = 1:num_channels
rx_symbols_cp(:, :, i) = tx_symbols_cp .* diag(channel(:, i));
end
%% 添加高斯白噪声
rx_symbols_cp_noisy = awgn(rx_symbols_cp, SNR, 'measured');
%% 移除循环前缀并进行FFT
rx_symbols = rx_symbols_cp_noisy(cp_len+1:end, :, :);
rx_data = fft(rx_symbols);
%% 解调数据
rx_bits = reshape(rx_data, N*num_symbols*num_channels, 1) > 0.5;
%% 计算误码率
num_errors = sum(xor(rx_bits, tx_data(:)));
ber = num_errors / (N*num_symbols*num_channels);
disp(['误码率:', num2str(ber)]);
```
再次感谢您的指正,希望这个回答可以帮到您!
阅读全文