由于数据量少,无法满足模型训练要求,写一段用于unet图像分割的数据预处理代码
时间: 2023-04-08 09:04:51 浏览: 163
图像预处理,图像分割源码
4星 · 用户满意度95%
以下是一段用于unet图像分割的数据预处理代码:
```python
import numpy as np
import cv2
def preprocess_data(images, masks, img_size):
# Resize images and masks to desired size
images_resized = []
masks_resized = []
for i in range(len(images)):
img = cv2.resize(images[i], img_size)
mask = cv2.resize(masks[i], img_size)
images_resized.append(img)
masks_resized.append(mask)
# Normalize images
images_normalized = np.array(images_resized, dtype=np.float32) / 255.0
# Convert masks to one-hot encoding
masks_encoded = []
for mask in masks_resized:
mask_encoded = np.zeros((mask.shape[0], mask.shape[1], 2), dtype=np.float32)
mask_encoded[mask == 255, 1] = 1.0
mask_encoded[mask == 0, 0] = 1.0
masks_encoded.append(mask_encoded)
return images_normalized, np.array(masks_encoded)
```
这段代码将输入的图像和对应的掩模(mask)分别进行了缩放和归一化处理,并将掩模转换为了one-hot编码的形式,以便用于unet模型的训练。
阅读全文