(1)Python导入模块时一般采用什么搜索顺序? (2)Python 的内置属性name_有什么作用? (3)Python 的第三方库如何安装?如何查看当前计算机中已经安装的第三方库

时间: 2024-03-16 07:41:44 浏览: 15
(1) Python导入模块时一般采用以下搜索顺序: - 当前目录 - 环境变量PYTHONPATH指定的目录 - Python默认安装的库目录 (2) Python的内置属性`__name__`是一个特殊变量,它用于表示模块的名称。在一个模块中,`__name__`的值通常为该模块的名称;而在主程序中,`__name__`的值为`__main__`。这个属性在编写模块和测试代码时很有用。 (3) 安装第三方库可以使用`pip`命令,例如安装名为`requests`的库可以使用以下命令: ``` pip install requests ``` 要查看当前计算机中已经安装的第三方库,可以使用以下命令: ``` pip list ``` 该命令将列出所有已安装的第三方库及其版本号。
相关问题

python的内置属性__name__有什么作用?

Python中内置属性__name__的作用是判断当前模块是否被直接运行。当一个.py文件被直接运行时,其__name__属性的值为'__main__',此时可以执行一些特定的代码块。而当一个.py文件被作为模块导入时,其__name__属性的值为模块的名字,此时可以避免在模块被导入时执行一些不必要的代码块。 举个例子,我们有一个main.py文件和一个util.py文件。在util.py文件中,我们定义了一些函数、变量等。而在main.py文件中,我们希望测试util.py文件中的函数是否正常工作。这时我们可以在util.py文件的末尾加上一个判断语句: if __name__ == '__main__': # 执行测试代码 这样当我们直接运行util.py文件时,上面的if语句会成立,进入if代码块中执行测试代码。而当我们从main.py文件中导入util模块时,由于util.py文件的__name__属性的值为util,if语句不成立,测试代码不会被执行。 这个特性非常有用,可以帮助我们在编写模块时进行调试、测试和运行时的行为控制。通过判断__name__属性的值,我们可以根据不同的情况执行不同的代码,提高代码的可重用性和可维护性。

python程序中__name__属性作用是什么

在 Python 中,每个模块都有一个特殊的属性 `__name__`,它可以用来判断模块是被导入执行还是被直接执行。具体来说,当一个 Python 文件被直接执行时,`__name__` 的值为 `"__main__"`,如果该文件被作为模块导入到其他文件中执行,则 `__name__` 的值为该模块的名称。 这个属性通常用于模块的自测,即在模块中添加一些测试代码,在直接执行该模块时可以执行测试代码,但是在被导入时不会执行测试代码。例如: ```python # my_module.py def my_function(): print("Hello, world!") if __name__ == "__main__": # 在直接执行该模块时执行测试代码 my_function() ``` 当该模块被直接执行时,`__name__` 的值为 `"__main__"`,则 `my_function()` 会被执行,打印出 "Hello, world!"。但是当该模块被其他模块导入时,`__name__` 的值为模块的名称,此时测试代码不会被执行。

相关推荐

最新推荐

recommend-type

Python中if __name__ == '__main__'作用解析

主要介绍了Python中if __name__ == '__main__'作用解析,这断代码在Python中非常常见,它有作用?本文就解析了它的作用,需要的朋友可以参考下
recommend-type

python 制作python包,封装成可用模块教程

将以上.py文件做成python模块,需要在相同目录下创建setup.py文件,setup.py中输入配置信息: from setuptools import setup setup(name='printtest', version='1.0', py_modules=['printtest'], ) 打开终端,...
recommend-type

使用python的信息检索作业(1)

查阅资料后考虑借助python的***nltk***库(需要额外安装) 最基础版: import nltk import os current_path = os.path.abspath(__file__) path = os.path.abspath(os.path.dirname(current_path) + os.path.sep + "....
recommend-type

Pycharm打开已有项目配置python环境的方法

配置Python编译环境 菜单栏依次点击如下: File -> setting -> 左侧 project : project-name -> Project Interpreter -> 点击解释器右侧齿轮 即设置 -> Add local... -> Virtual Environment -> 可以选择 Bash ...
recommend-type

Python中对错误NameError: name ‘xxx’ is not defined进行总结

最近在使用python过重遇到这个问题,NameError: name 'xxx' is not defined,在学习python或者在使用python的过程中这个问题大家肯定都遇到过,在这里我就这个问题总结以下几种情况: 错误NameError: name ‘xxx’ ...
recommend-type

CIC Compiler v4.0 LogiCORE IP Product Guide

CIC Compiler v4.0 LogiCORE IP Product Guide是Xilinx Vivado Design Suite的一部分,专注于Vivado工具中的CIC(Cascaded Integrator-Comb滤波器)逻辑内核的设计、实现和调试。这份指南涵盖了从设计流程概述、产品规格、核心设计指导到实际设计步骤的详细内容。 1. **产品概述**: - CIC Compiler v4.0是一款针对FPGA设计的专业IP核,用于实现连续积分-组合(CIC)滤波器,常用于信号处理应用中的滤波、下采样和频率变换等任务。 - Navigating Content by Design Process部分引导用户按照设计流程的顺序来理解和操作IP核。 2. **产品规格**: - 该指南提供了Port Descriptions章节,详述了IP核与外设之间的接口,包括输入输出数据流以及可能的控制信号,这对于接口配置至关重要。 3. **设计流程**: - General Design Guidelines强调了在使用CIC Compiler时的基本原则,如选择合适的滤波器阶数、确定时钟配置和复位策略。 - Clocking和Resets章节讨论了时钟管理以及确保系统稳定性的关键性复位机制。 - Protocol Description部分介绍了IP核与其他模块如何通过协议进行通信,以确保正确的数据传输。 4. **设计流程步骤**: - Customizing and Generating the Core讲述了如何定制CIC Compiler的参数,以及如何将其集成到Vivado Design Suite的设计流程中。 - Constraining the Core部分涉及如何在设计约束文件中正确设置IP核的行为,以满足具体的应用需求。 - Simulation、Synthesis and Implementation章节详细介绍了使用Vivado工具进行功能仿真、逻辑综合和实施的过程。 5. **测试与升级**: - Test Bench部分提供了一个演示性的测试平台,帮助用户验证IP核的功能。 - Migrating to the Vivado Design Suite和Upgrading in the Vivado Design Suite指导用户如何在新版本的Vivado工具中更新和迁移CIC Compiler IP。 6. **支持与资源**: - Documentation Navigator and Design Hubs链接了更多Xilinx官方文档和社区资源,便于用户查找更多信息和解决问题。 - Revision History记录了IP核的版本变化和更新历史,确保用户了解最新的改进和兼容性信息。 7. **法律责任**: - 重要Legal Notices部分包含了版权声明、许可条款和其他法律注意事项,确保用户在使用过程中遵循相关规定。 CIC Compiler v4.0 LogiCORE IP Product Guide是FPGA开发人员在使用Vivado工具设计CIC滤波器时的重要参考资料,提供了完整的IP核设计流程、功能细节及技术支持路径。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵奇异值分解(SVD)应用指南:从降维到图像处理,5个实用案例

![MATLAB矩阵奇异值分解(SVD)应用指南:从降维到图像处理,5个实用案例](https://img-blog.csdnimg.cn/20200302213423127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDEzMjAzNQ==,size_16,color_FFFFFF,t_70) # 1. 矩阵奇异值分解(SVD)简介** 矩阵奇异值分解(SVD)是一种强大的线性代数技术,用于将矩阵分解为三个
recommend-type

HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_0); HAL_Delay(200);是什么意思

这段代码是针对STM32F4xx系列的GPIO库函数,用于控制GPIOC的0号引脚的电平状态。具体来说,HAL_GPIO_TogglePin函数用于翻转GPIO引脚的电平状态,即如果该引脚原来是高电平,则变为低电平,反之亦然。而HAL_Delay函数则是用于延时200毫秒。因此,这段代码的作用是每200毫秒翻转一次GPIOC的0号引脚的电平状态。
recommend-type

G989.pdf

"这篇文档是关于ITU-T G.989.3标准,详细规定了40千兆位无源光网络(NG-PON2)的传输汇聚层规范,适用于住宅、商业、移动回程等多种应用场景的光接入网络。NG-PON2系统采用多波长技术,具有高度的容量扩展性,可适应未来100Gbit/s或更高的带宽需求。" 本文档主要涵盖了以下几个关键知识点: 1. **无源光网络(PON)技术**:无源光网络是一种光纤接入技术,其中光分配网络不包含任何需要电源的有源电子设备,从而降低了维护成本和能耗。40G NG-PON2是PON技术的一个重要发展,显著提升了带宽能力。 2. **40千兆位能力**:G.989.3标准定义的40G NG-PON2系统提供了40Gbps的传输速率,为用户提供超高速的数据传输服务,满足高带宽需求的应用,如高清视频流、云服务和大规模企业网络。 3. **多波长信道**:NG-PON2支持多个独立的波长信道,每个信道可以承载不同的服务,提高了频谱效率和网络利用率。这种多波长技术允许在同一个光纤上同时传输多个数据流,显著增加了系统的总容量。 4. **时分和波分复用(TWDM)**:TWDM允许在不同时间间隔内分配不同波长,为每个用户分配专用的时隙,从而实现多个用户共享同一光纤资源的同时传输。 5. **点对点波分复用(WDMPtP)**:与TWDM相比,WDMPtP提供了一种更直接的波长分配方式,每个波长直接连接到特定的用户或设备,减少了信道之间的干扰,增强了网络性能和稳定性。 6. **容量扩展性**:NG-PON2设计时考虑了未来的容量需求,系统能够灵活地增加波长数量或提高每个波长的速率,以适应不断增长的带宽需求,例如提升至100Gbit/s或更高。 7. **应用场景**:40G NG-PON2不仅用于住宅宽带服务,还广泛应用于商业环境中的数据中心互联、企业网络以及移动通信基站的回传,为各种业务提供了高性能的接入解决方案。 8. **ITU-T标准**:作为国际电信联盟电信标准化部门(ITU-T)的一部分,G.989.3建议书为全球的电信运营商和设备制造商提供了一套统一的技术规范,确保不同厂商的产品和服务之间的兼容性和互操作性。 9. **光接入网络**:G.989.3标准是接入网络技术的一个重要组成部分,它与光纤到户(FTTH)、光纤到楼(FTTB)等光接入方案相结合,构建了高效、可靠的宽带接入基础设施。 ITU-T G.989.3标准详细规定了40G NG-PON2系统的传输汇聚层,为现代高速网络接入提供了强大的技术支持,推动了光通信技术的持续进步。