用梯度下降法建立bp神经网络 matlab代码
时间: 2023-09-05 07:09:11 浏览: 205
以下是用Matlab实现的基本BP神经网络模型,包括输入层、输出层和一个隐藏层,使用梯度下降法进行参数更新:
```matlab
classdef BPNeuralNetwork
properties
input_size
hidden_size
output_size
learning_rate
w1
b1
w2
b2
end
methods
function obj = BPNeuralNetwork(input_size, hidden_size, output_size, learning_rate)
obj.input_size = input_size;
obj.hidden_size = hidden_size;
obj.output_size = output_size;
obj.learning_rate = learning_rate;
% 初始化权重和偏置参数
obj.w1 = randn(input_size, hidden_size);
obj.b1 = zeros(1, hidden_size);
obj.w2 = randn(hidden_size, output_size);
obj.b2 = zeros(1, output_size);
end
function a = sigmoid(obj, x)
a = 1 ./ (1 + exp(-x));
end
function y_pred = forward(obj, X)
% 前向传播,计算每个神经元的输出值
obj.z1 = X * obj.w1 + obj.b1;
obj.a1 = obj.sigmoid(obj.z1);
obj.z2 = obj.a1 * obj.w2 + obj.b2;
obj.a2 = obj.sigmoid(obj.z2);
y_pred = obj.a2;
end
function a = sigmoid_derivative(obj, x)
a = x .* (1 - x);
end
function backward(obj, X, y, y_pred)
% 反向传播,计算每个参数的梯度值
obj.error = y - y_pred;
obj.delta2 = obj.error .* obj.sigmoid_derivative(y_pred);
obj.delta1 = obj.delta2 * obj.w2' .* obj.sigmoid_derivative(obj.a1);
obj.w2 = obj.w2 + obj.learning_rate * obj.a1' * obj.delta2;
obj.b2 = obj.b2 + obj.learning_rate * sum(obj.delta2, 1);
obj.w1 = obj.w1 + obj.learning_rate * X' * obj.delta1;
obj.b1 = obj.b1 + obj.learning_rate * sum(obj.delta1, 1);
end
function train(obj, X, y, epochs)
for i = 1:epochs
y_pred = obj.forward(X);
obj.backward(X, y, y_pred);
end
end
function y_pred = predict(obj, X)
y_pred = obj.forward(X);
end
end
end
```
其中,`BPNeuralNetwork`类用于定义BP神经网络模型,`sigmoid`函数用于计算sigmoid激活函数的输出值,`forward`函数用于进行前向传播,`sigmoid_derivative`函数用于计算sigmoid函数的导数,`backward`函数用于进行反向传播,`train`函数用于训练网络,`predict`函数用于进行预测。在训练过程中,我们可以使用`train`函数对模型进行训练,并使用`predict`函数对新的数据进行预测。
阅读全文