可以提供一个sarsa智能体的代码吗?
时间: 2023-01-15 20:49:51 浏览: 109
使用python实现rsa算法代码
当然可以!
这是一个基于 Python 的简单 Sarsa 智能体的例子:
```
import numpy as np
class SarsaAgent:
def __init__(self, alpha, epsilon, discount, get_actions):
self.alpha = alpha
self.epsilon = epsilon
self.discount = discount
self.get_actions = get_actions
self.Q = {}
def getQ(self, state, action):
return self.Q.get((state, action), 0.0)
def learnQ(self, state, action, reward, value):
oldv = self.Q.get((state, action), None)
if oldv is None:
self.Q[(state, action)] = reward
else:
self.Q[(state, action)] = oldv + self.alpha * (value - oldv)
def choose_action(self, state):
if np.random.uniform(0, 1) < self.epsilon:
action = np.random.choice(self.get_actions(state))
else:
q = [self.getQ(state, a) for a in self.get_actions(state)]
maxQ = max(q)
count = q.count(maxQ)
if count > 1:
best = [i for i in range(len(self.get_actions(state))) if q[i] == maxQ]
i = np.random.choice(best)
else:
i = q.index(maxQ)
action = self.get_actions(state)[i]
return action
def learn(self, state1, action1, reward, state2, action2):
qnext = self.getQ(state2, action2)
self.learnQ(state1, action1, reward, reward + self.discount*qnext)
```
在这个例子中,我们定义了一个 SarsaAgent 类,该类有五个方法:
- `__init__`:构造函数,用于初始化 SarsaAgent 对象。
- `getQ`:返回给定状态和动作的 Q 值。
- `learnQ`:更新 Q 值。
- `choose_action`:根据给定的状态选择动作。
- `learn`:执行 Sarsa 算法的核心部分,即更新 Q 值。
希望这个例子能够帮到你!
阅读全文