pytorch实现DQN强化学习
时间: 2023-10-23 17:30:40 浏览: 182
DQN(Deep Q-Network)是一种使用深度神经网络实现的强化学习算法,用于解决离散动作空间的问题。在PyTorch中实现DQN可以分为以下几个步骤:
1. 定义神经网络:使用PyTorch定义一个包含多个全连接层的神经网络,输入为状态空间的维度,输出为动作空间的维度。
```python
import torch.nn as nn
import torch.nn.functional as F
class QNet(nn.Module):
def __init__(self, state_dim, action_dim):
super(QNet, self).__init__()
self.fc1 = nn.Linear(state_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```
2. 定义经验回放缓存:包含多条经验,每条经验包含一个状态、一个动作、一个奖励和下一个状态。
```python
import random
class ReplayBuffer(object):
def __init__(self, max_size):
self.buffer = []
self.max_size = max_size
def push(self, state, action, reward, next_state):
if len(self.buffer) < self.max_size:
self.buffer.append((state, action, reward, next_state))
else:
self.buffer.pop(0)
self.buffer.append((state, action, reward, next_state))
def sample(self, batch_size):
state, action, reward, next_state = zip(*random.sample(self.buffer, batch_size))
return torch.stack(state), torch.tensor(action), torch.tensor(reward), torch.stack(next_state)
```
3. 定义DQN算法:使用PyTorch定义DQN算法,包含训练和预测两个方法。
```python
class DQN(object):
def __init__(self, state_dim, action_dim, gamma, epsilon, lr):
self.qnet = QNet(state_dim, action_dim)
self.target_qnet = QNet(state_dim, action_dim)
self.gamma = gamma
self.epsilon = epsilon
self.lr = lr
self.optimizer = torch.optim.Adam(self.qnet.parameters(), lr=self.lr)
self.buffer = ReplayBuffer(100000)
self.loss_fn = nn.MSELoss()
def act(self, state):
if random.random() < self.epsilon:
return random.randint(0, action_dim - 1)
else:
with torch.no_grad():
q_values = self.qnet(state)
return q_values.argmax().item()
def train(self, batch_size):
state, action, reward, next_state = self.buffer.sample(batch_size)
q_values = self.qnet(state).gather(1, action.unsqueeze(1)).squeeze(1)
target_q_values = self.target_qnet(next_state).max(1)[0].detach()
expected_q_values = reward + self.gamma * target_q_values
loss = self.loss_fn(q_values, expected_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_qnet(self):
self.target_qnet.load_state_dict(self.qnet.state_dict())
```
4. 训练模型:使用DQN算法进行训练,并更新目标Q网络。
```python
dqn = DQN(state_dim, action_dim, gamma=0.99, epsilon=1.0, lr=0.001)
for episode in range(num_episodes):
state = env.reset()
total_reward = 0
for step in range(max_steps):
action = dqn.act(torch.tensor(state, dtype=torch.float32))
next_state, reward, done, _ = env.step(action)
dqn.buffer.push(torch.tensor(state, dtype=torch.float32), action, reward, torch.tensor(next_state, dtype=torch.float32))
state = next_state
total_reward += reward
if len(dqn.buffer.buffer) > batch_size:
dqn.train(batch_size)
if step % target_update == 0:
dqn.update_target_qnet()
if done:
break
dqn.epsilon = max(0.01, dqn.epsilon * 0.995)
```
5. 测试模型:使用训练好的模型进行测试。
```python
total_reward = 0
state = env.reset()
while True:
action = dqn.act(torch.tensor(state, dtype=torch.float32))
next_state, reward, done, _ = env.step(action)
state = next_state
total_reward += reward
if done:
break
print("Total reward: {}".format(total_reward))
```
以上就是在PyTorch中实现DQN强化学习的基本步骤。需要注意的是,DQN算法中还有很多细节和超参数需要调整,具体实现过程需要根据具体问题进行调整。
阅读全文