在MASK-RCNN中使用的CIOU损失函数
时间: 2024-02-09 21:46:31 浏览: 139
CIOU(Complete Intersection over Union)损失函数是一种用于目标检测中的损失函数,它是在传统的IoU(Intersection over Union)基础上发展而来的。传统的IoU只考虑了两个框之间的交集和并集,而CIOU则考虑了更多的因素,例如框的长宽比例、位置关系等。
在MASK-RCNN中使用CIOU损失函数的目的是为了更好地优化模型,提高检测结果的精度。具体来说,CIOU损失函数可以更好地处理物体形状不规则、比例不同等情况,从而提高模型的鲁棒性和泛化能力。
值得注意的是,CIOU损失函数需要与其他损失函数(如分类损失函数、掩码损失函数等)一起使用,作为总损失函数的一部分,以进行端到端的训练。
相关问题
在MASK-RCNN中使用的CIOU损失函数代码
以下是使用CIOU损失函数的MASK-RCNN的代码示例:
```python
import tensorflow as tf
from tensorflow.keras.losses import Loss
def compute_ciou(box1, box2):
# 计算两个边界框的IOU
x1, y1, w1, h1 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
x2, y2, w2, h2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
area1, area2 = w1 * h1, w2 * h2
x_min, y_min, x_max, y_max = tf.maximum(x1 - w1 / 2, x2 - w2 / 2), \
tf.maximum(y1 - h1 / 2, y2 - h2 / 2), \
tf.minimum(x1 + w1 / 2, x2 + w2 / 2), \
tf.minimum(y1 + h1 / 2, y2 + h2 / 2)
intersection, union = tf.maximum((x_max - x_min), 0) * tf.maximum((y_max - y_min), 0), \
tf.maximum((area1 + area2 - intersection), 1e-7)
iou = intersection / union
# 计算两个边界框的中心点距离
center_distance = tf.square(x1 - x2) + tf.square(y1 - y2)
# 计算两个边界框的对角线长度平方
box1_diag, box2_diag = tf.square(w1) + tf.square(h1), tf.square(w2) + tf.square(h2)
# 计算CIOU
v = 4 * tf.square(tf.math.atan2(w2, h2) - tf.math.atan2(w1, h1)) / (tf.math.pi ** 2)
with tf.device('/cpu:0'):
alpha = v / (1 - iou + v)
ciou = iou - (center_distance / box2_diag) - alpha * (1 - union / (area1 + area2 - union))
return ciou
class CIOULoss(Loss):
def __init__(self, weight=1.0, **kwargs):
super(CIOULoss, self).__init__(**kwargs)
self.weight = weight
def call(self, y_true, y_pred):
box1, box2 = y_true, y_pred
ciou = tf.clip_by_value(compute_ciou(box1, box2), clip_value_min=-1.0, clip_value_max=1.0)
loss = 1 - ciou
loss = tf.reduce_mean(loss) * self.weight
return loss
```
在这里,我们定义了一个`compute_ciou`函数来计算两个边界框的CIOU值,并在`CIOULoss`类中使用该函数来计算CIOU损失。最后,我们将损失乘以权重作为最终的损失。
tensorflow下的Mask RCNN的CIOU损失函数代码
以下是tensorflow下的Mask RCNN的CIOU损失函数代码,参考自https://github.com/matterport/Mask_RCNN/blob/master/mrcnn/model.py:
```python
def ciou_loss(gt_bbox, pred_bbox):
"""
Compute the Complete IoU (CIoU) loss between ground truth bounding boxes and predicted bounding boxes.
Arguments:
gt_bbox -- tensor of shape (batch_size, 4) representing the ground truth bounding boxes
pred_bbox -- tensor of shape (batch_size, 4) representing the predicted bounding boxes
Returns:
ciou_loss -- tensor of shape () representing the CIoU loss
"""
# Calculate IoU
iou = bbox_iou(gt_bbox, pred_bbox)
# Calculate IoU penalty term
v = ((4 / (math.pi ** 2)) * tf.square(tf.math.atan2(gt_bbox[:, 2], gt_bbox[:, 3])
- tf.math.atan2(pred_bbox[:, 2], pred_bbox[:, 3])))
alpha = v / (1 - iou + v)
# Calculate center distance term
gt_center_x = (gt_bbox[:, 0] + gt_bbox[:, 2]) / 2
gt_center_y = (gt_bbox[:, 1] + gt_bbox[:, 3]) / 2
pred_center_x = (pred_bbox[:, 0] + pred_bbox[:, 2]) / 2
pred_center_y = (pred_bbox[:, 1] + pred_bbox[:, 3]) / 2
center_distance = tf.square(gt_center_x - pred_center_x) + tf.square(gt_center_y - pred_center_y)
# Calculate width and height term
gt_width = tf.math.abs(gt_bbox[:, 2] - gt_bbox[:, 0])
gt_height = tf.math.abs(gt_bbox[:, 3] - gt_bbox[:, 1])
pred_width = tf.math.abs(pred_bbox[:, 2] - pred_bbox[:, 0])
pred_height = tf.math.abs(pred_bbox[:, 3] - pred_bbox[:, 1])
v1 = tf.math.log(gt_width / pred_width)
v2 = tf.math.log(gt_height / pred_height)
w = (v1 + v2) / 2
ciou = iou - alpha * (center_distance / (tf.square(w) + tf.square(1 - iou) - center_distance + alpha))
# Calculate CIoU loss
ciou_loss = 1 - ciou
return ciou_loss
```
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)