请解释一下这段报错 Traceback (most recent call last): File "D:/yolov7-lpr/yolov7_plate-master/plate_recognition/lprnet_plate_recognition.py", line 41, in <module> result = lprnet_plate_recognition("D:\yolov7-lpr\yolov7_plate-master\imgs\police.jpg", "D:\yolov7-lpr\yolov7_plate-master\weights\Final_LPRNet_model.pth") File "D:/yolov7-lpr/yolov7_plate-master/plate_recognition/lprnet_plate_recognition.py", line 9, in lprnet_plate_recognition model = torch.load(model_path) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 608, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 787, in _legacy_load result = unpickler.load() File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 743, in persistent_load deserialized_objects[root_key] = restore_location(obj, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 175, in default_restore_location result = fn(storage, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 151, in _cuda_deserialize device = validate_cuda_device(location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 135, in validate_cuda_device raise RuntimeError('Attempting to deserialize object on a CUDA ' RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.
时间: 2023-06-24 08:05:01 浏览: 553
这个报错是因为您正在尝试在 CUDA 设备上反序列化对象,但是您的机器上没有安装 CUDA 或者没有正确配置 CUDA。您可以尝试使用 `torch.load` 并传递 `map_location=torch.device('cpu')` 参数来将模型加载到 CPU 上进行运算。例如,您可以尝试使用以下代码进行模型加载:
```python
model = torch.load(model_path, map_location=torch.device('cpu'))
```
这将把模型加载到 CPU 上,即使您的机器本来是支持 CUDA 的。这样,您就可以在不需要 CUDA 的机器上运行代码。
相关问题
Traceback (most recent call last): File "D:/yolov7-lpr/yolov7_plate-master/plate_recognition/lprnet_plate_recognition.py", line 41, in <module> result = lprnet_plate_recognition("D:\yolov7-lpr\yolov7_plate-master\imgs\police.jpg", "D:\yolov7-lpr\yolov7_plate-master\weights\Final_LPRNet_model.pth") File "D:/yolov7-lpr/yolov7_plate-master/plate_recognition/lprnet_plate_recognition.py", line 10, in lprnet_plate_recognition model.eval() AttributeError: 'collections.OrderedDict' object has no attribute 'eval'这段报错是什么意思
这报错意味着你的代码中使用了一个名为"model"的对象,但它是一个有序字典(OrderedDict)类型的对象,该类型没有名为"eval"的属性。这通常表示你的模型没有被正确加载或初始化。你需要检查你的代码,确保正确加载了你的模型,并且确保模型是PyTorch的nn.Module类型的对象,才能调用eval()方法。
Traceback (most recent call last): File "D:/yolov7-lpr/yolov7_plate-master/UI/VideoPlay/main.py", line 40, in <module> player = VideoPlayer() File "D:/yolov7-lpr/yolov7_plate-master/UI/VideoPlay/main.py", line 26, in __init__ vboxLayout = QVBoxLayout() NameError: name 'QVBoxLayout' is not defined
这个错误提示告诉我们在 `main.py` 文件的第26行出现了一个 `NameError`,即 `QVBoxLayout` 没有被定义。这通常是由于没有正确导入需要使用的模块或类所导致的。
要解决这个问题,你需要在 `main.py` 文件的开头添加以下代码:
```python
from PyQt5.QtWidgets import QVBoxLayout
```
这将导入 `QVBoxLayout` 类并让你能够在 `VideoPlayer` 类中使用它。
阅读全文