请解释一下这段报错 Traceback (most recent call last): File "D:/yolov7-lpr/yolov7_plate-master/plate_recognition/lprnet_plate_recognition.py", line 41, in <module> result = lprnet_plate_recognition("D:\yolov7-lpr\yolov7_plate-master\imgs\police.jpg", "D:\yolov7-lpr\yolov7_plate-master\weights\Final_LPRNet_model.pth") File "D:/yolov7-lpr/yolov7_plate-master/plate_recognition/lprnet_plate_recognition.py", line 9, in lprnet_plate_recognition model = torch.load(model_path) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 608, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 787, in _legacy_load result = unpickler.load() File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 743, in persistent_load deserialized_objects[root_key] = restore_location(obj, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 175, in default_restore_location result = fn(storage, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 151, in _cuda_deserialize device = validate_cuda_device(location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 135, in validate_cuda_device raise RuntimeError('Attempting to deserialize object on a CUDA ' RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.
时间: 2023-06-24 19:05:01 浏览: 522
rich-traceback:Python 日志记录模块的信息回溯
这个报错是因为您正在尝试在 CUDA 设备上反序列化对象,但是您的机器上没有安装 CUDA 或者没有正确配置 CUDA。您可以尝试使用 `torch.load` 并传递 `map_location=torch.device('cpu')` 参数来将模型加载到 CPU 上进行运算。例如,您可以尝试使用以下代码进行模型加载:
```python
model = torch.load(model_path, map_location=torch.device('cpu'))
```
这将把模型加载到 CPU 上,即使您的机器本来是支持 CUDA 的。这样,您就可以在不需要 CUDA 的机器上运行代码。
阅读全文