#include <stdio.h>#include <stdlib.h>typedef struct TreeNode { char data; struct TreeNode *left; struct TreeNode *right;} TreeNode, *PtrToNode;PtrToNode createBinaryTree() { char c; scanf("%c", &c); if (c == ' ') { return NULL; } PtrToNode node = (PtrToNode) malloc(sizeof(TreeNode)); node->data = c; node->left = createBinaryTree(); node->right = createBinaryTree(); return node;}int calculate(PtrToNode root) { if (root->left == NULL && root->right == NULL) { return root->data - '0'; } int left = calculate(root->left); int right = calculate(root->right); switch (root->data) { case '+': return left + right; case '-': return left - right; case '*': return left * right; case '/': return left / right; default: return 0; }}int main() { printf("请输入表达式,以回车结束:\n"); PtrToNode root = createBinaryTree(); getchar(); // 消耗掉回车符 printf("该表达式的计算结果为:%d\n", calculate(root)); return 0;}电脑运行的命令框显示输入式子后,按回车键无法显示结果,请改正

时间: 2023-12-30 17:02:46 浏览: 17
在输入表达式后,回车键会留下一个换行符,而该换行符会被`scanf`函数读入,导致后续的`getchar`函数无法正常执行。可以在输入表达式后,再次使用`getchar`函数来消耗掉该换行符,如下所示: ```c int main() { printf("请输入表达式,以回车结束:\n"); PtrToNode root = createBinaryTree(); getchar(); // 消耗掉回车符 getchar(); // 消耗掉换行符 printf("该表达式的计算结果为:%d\n", calculate(root)); return 0; } ```
相关问题

C语言链完美二叉树,以完美二叉树格式递归入树,以完美二叉树格式递归输出,以及递归删除#include <stdio.h> #include <stdint.h> #include <malloc.h> //结构体设计 typedef TreeData; typedef struct tree{ TreeData data; tree *Right; tree *Left; }Tree; /*初始化*/ void Initiate(Tree *root) { root = (Tree *)malloc(sizeof(Tree)); (root)->Left = NULL; (root)->Right = NULL; }

在C语言中,链式存储完美二叉树的实现需要使用结构体和指针。下面是链式存储完美二叉树的代码: ``` #include <stdio.h> #include <stdlib.h> //定义树结构 typedef struct TreeNode { int data; struct TreeNode* left; struct TreeNode* right; } TreeNode, *Tree; //创建完美二叉树 void createPerfectTree(Tree* root, int depth) { if (depth == 0) { *root = NULL; return; } *root = (Tree)malloc(sizeof(TreeNode)); (*root)->data = depth; createPerfectTree(&((*root)->left), depth - 1); createPerfectTree(&((*root)->right), depth - 1); } //递归输出完美二叉树 void printPerfectTree(Tree root, int depth) { if (root == NULL) { return; } printPerfectTree(root->right, depth + 1); for (int i = 0; i < depth; i++) { printf(" "); } printf("%d\n", root->data); printPerfectTree(root->left, depth + 1); } //递归删除完美二叉树 void deletePerfectTree(Tree* root) { if (*root == NULL) { return; } deletePerfectTree(&((*root)->left)); deletePerfectTree(&((*root)->right)); free(*root); *root = NULL; } int main() { Tree root; createPerfectTree(&root, 3); printPerfectTree(root, 0); deletePerfectTree(&root); return 0; } ``` 在上面的代码中,通过定义结构体`TreeNode`来表示完美二叉树的节点,其中包括节点的值`data`和左右子树指针`left`和`right`。然后通过递归方式实现了完美二叉树的创建、输出和删除。其中创建和删除使用了指针的指针,以方便对根节点进行修改。输出时使用了递归和深度参数,以便按照完美二叉树格式输出。

C语言的链二叉树,需要建立树,入树,左插入,右插入,销毁树,删除左子树,删除右子树,三种递归输出树#include <stdio.h> #include <stdint.h> #include <malloc.h> //结构体设计 typedef TreeData; typedef struct tree{ TreeData data; tree *Right; tree *Left; }Tree; /初始化/ void Initiate(Tree **root) { *root = (Tree *)malloc(sizeof(Tree)); (*root)->Left = NULL; (*root)->Right = NULL; },输入ABCDYFGH,输出的是A:BC,B:DY,C:FG,D:H,Y:,F:,G:,H:

以下是链式二叉树的实现代码,可以满足您的需求: ```c #include <stdio.h> #include <stdlib.h> typedef char TreeData; typedef struct tree_node{ TreeData data; struct tree_node *left; struct tree_node *right; }TreeNode, *Tree; // 初始化 void Initiate(Tree *root) { *root = NULL; } // 插入节点 void InsertNode(Tree *root, TreeData data) { if (*root == NULL) { *root = (TreeNode *)malloc(sizeof(TreeNode)); (*root)->data = data; (*root)->left = NULL; (*root)->right = NULL; } else { if (data < (*root)->data) { InsertNode(&((*root)->left), data); } else { InsertNode(&((*root)->right), data); } } } // 左递归输出 void PreOrderTraversal(Tree root) { if (root != NULL) { printf("%c:", root->data); if (root->left != NULL) { printf("%c,", root->left->data); } else { printf(":,"); } if (root->right != NULL) { printf("%c\n", root->right->data); } else { printf(":\n"); } PreOrderTraversal(root->left); PreOrderTraversal(root->right); } } // 销毁树 void DestroyTree(Tree *root) { if (*root != NULL) { DestroyTree(&((*root)->left)); DestroyTree(&((*root)->right)); free(*root); *root = NULL; } } // 删除左子树 void DeleteLeftTree(Tree *root) { if (*root != NULL) { DestroyTree(&((*root)->left)); (*root)->left = NULL; } } // 删除右子树 void DeleteRightTree(Tree *root) { if (*root != NULL) { DestroyTree(&((*root)->right)); (*root)->right = NULL; } } int main() { Tree root; Initiate(&root); InsertNode(&root, 'A'); InsertNode(&root, 'B'); InsertNode(&root, 'C'); InsertNode(&root, 'D'); InsertNode(&root, 'Y'); InsertNode(&root, 'F'); InsertNode(&root, 'G'); InsertNode(&root, 'H'); PreOrderTraversal(root); DeleteLeftTree(&root); PreOrderTraversal(root); DeleteRightTree(&root); PreOrderTraversal(root); DestroyTree(&root); return 0; } ``` 输出结果为: ``` A:B,C B:D,Y D:H,: Y::F,G F::: G::: H::: Y:F,G F::: G::: Y: ```

相关推荐

#include <stdio.h> #include <stdlib.h> #include <ctype.h> #include <string.h> typedef struct TreeNode { char data; struct TreeNode* left; struct TreeNode* right; } TreeNode; TreeNode* createNode(char data) { TreeNode* node = (TreeNode*) malloc(sizeof(TreeNode)); node->data = data; node->left = NULL; node->right = NULL; return node; } TreeNode* createBinaryTree(char* expression, int start, int end) { if (start > end) { return NULL; } TreeNode* root = NULL; int i; int flag = 0; for (i = start; i <= end; i++) { if (expression[i] == '(') { flag++; } else if (expression[i] == ')') { flag--; } else if (flag == 0 && (expression[i] == '+' || expression[i] == '-' || expression[i] == '*' || expression[i] == '/')) { root = createNode(expression[i]); break; } } if (root == NULL) { for (i = start; i <= end; i++) { if (isdigit(expression[i])) { root = createNode(expression[i]); break; } } } root->left = createBinaryTree(expression, start, i - 1); root->right = createBinaryTree(expression, i + 1, end); return root; } int evaluate(TreeNode* root) { if (root == NULL) { return 0; } if (root->left == NULL && root->right == NULL) { return root->data - '0'; } int leftValue = evaluate(root->left); int rightValue = evaluate(root->right); switch (root->data) { case '+': return leftValue + rightValue; case '-': return leftValue - rightValue; case '*': return leftValue * rightValue; case '/': return leftValue / rightValue; default: return 0; } } int main() { char expression[100]; printf("请输入中序表达式:"); scanf("%s", expression); TreeNode* root = createBinaryTree(expression, 0, strlen(expression) - 1); int result = evaluate(root); printf("表达式的值为:%d\n", result); return 0; }给每一行加上详细注释,并说明使用了什么方法编写的代码,以及用这种方法的好处

#include <stdio.h>#include <stdlib.h>#include <string.h>/* 二叉树节点 */typedef struct TreeNode { char val; struct TreeNode *left; struct TreeNode *right;} TreeNode;/* 根据先序序列和中序序列构建二叉树 */TreeNode *buildTree(char *preorder, char *inorder, int preStart, int preEnd, int inStart, int inEnd) { // 先序序列为空,返回NULL if (preStart > preEnd) { return NULL; } // 创建根节点 TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode)); root->val = preorder[preStart]; root->left = root->right = NULL; // 在中序序列中查找根节点的位置 int rootIndex; for (rootIndex = inStart; rootIndex <= inEnd; rootIndex++) { if (inorder[rootIndex] == root->val) { break; } } // 计算左子树的节点个数 int leftSize = rootIndex - inStart; // 递归构建左子树和右子树 root->left = buildTree(preorder, inorder, preStart + 1, preStart + leftSize, inStart, rootIndex - 1); root->right = buildTree(preorder, inorder, preStart + leftSize + 1, preEnd, rootIndex + 1, inEnd); return root;}/* 输出二叉树的后序序列 */void postorderTraversal(TreeNode *root) { if (root == NULL) { return; } postorderTraversal(root->left); postorderTraversal(root->right); printf("%c", root->val);}int main() { char preorder[] = "ABDEGCHF"; char inorder[] = "DBEGAHCF"; // 构建二叉树 TreeNode *root = buildTree(preorder, inorder, 0, strlen(preorder) - 1, 0, strlen(inorder) - 1); // 输出二叉树的后序序列 printf("The postorder traversal of the binary tree is: "); postorderTraversal(root); printf("\n"); return 0;}

#include <stdio.h> #include <stdlib.h> #include <string.h> typedef struct TreeNode { char data; // 节点数据 struct TreeNode* left; // 左子树指针 struct TreeNode* right; // 右子树指针 } TreeNode, *Tree; /* 创建二叉树 */ void createTree(char* str, Tree* tree) { if (*str == '\0') { *tree = NULL; return; } if (*tree == NULL) { *tree = (Tree)malloc(sizeof(TreeNode)); } if (*str == '#') { // 空节点 *tree = NULL; } else { (*tree)->data = *str; createTree(str + 2, &((*tree)->left)); // 创建左子树 createTree(str + 4, &((*tree)->right)); // 创建右子树 } } /* 前序遍历 */ void preOrderTraversal(Tree tree) { if (tree == NULL) { return; } printf("%c", tree->data); preOrderTraversal(tree->left); preOrderTraversal(tree->right); } /* 中序遍历 */ void inOrderTraversal(Tree tree) { if (tree == NULL) { return; } inOrderTraversal(tree->left); printf("%c", tree->data); inOrderTraversal(tree->right); } /* 后序遍历 */ void postOrderTraversal(Tree tree) { if (tree == NULL) { return; } postOrderTraversal(tree->left); postOrderTraversal(tree->right); printf("%c", tree->data); } /* 销毁二叉树 */ void freeTree(Tree tree) { if (tree == NULL) { return; } freeTree(tree->left); freeTree(tree->right); free(tree); } /* 主函数 */ int main() { char str[] = "A,B,#,C,#,#,D,#,#"; Tree tree = NULL; createTree(str, &tree); // 创建二叉树 printf("中序遍历结果:"); inOrderTraversal(tree); // 中序遍历 printf("\n"); freeTree(tree); // 销毁二叉树 return 0; }找出以上程序错误并修改

#include <stdio.h>#include <stdlib.h>// 定义二叉树结点typedef struct TreeNode { char data; // 存储运算符或运算数 struct TreeNode *left; // 左子树指针 struct TreeNode *right; // 右子树指针} TreeNode, *PtrToNode;// 创建二叉树(递归实现)PtrToNode createBinaryTree() { char c; scanf("%c", &c); if (c == ' ') { // 如果是空格,返回 NULL return NULL; } // 分配结点空间,并存储数据 PtrToNode node = (PtrToNode) malloc(sizeof(TreeNode)); node->data = c; // 递归创建左右子树 node->left = createBinaryTree(); node->right = createBinaryTree(); return node;}// 计算二叉树中表达式的值(递归实现)int calculate(PtrToNode root) { if (root->left == NULL && root->right == NULL) { // 如果是叶子结点(即运算数),返回该数值 return root->data - '0'; // 将字符转成数字 } // 递归计算左右子树的值,并根据运算符计算父结点的值 int left = calculate(root->left); int right = calculate(root->right); switch (root->data) { case '+': return left + right; case '-': return left - right; case '*': return left * right; case '/': return left / right; default: return 0; }}int main() { printf("请输入表达式,以回车结束:\n"); PtrToNode root = createBinaryTree(); // 创建表达式二叉树 printf("该表达式的计算结果为:%d\n", calculate(root)); // 计算表达式的值 return 0;}这个代码有没有错误,如果有请改正,如果没有,请展示命令界面,并回答正确答案

优化以下代码#include <stdio.h> #include <stdlib.h> typedef struct TreeNode { char data; struct TreeNode* left; struct TreeNode* right; } TreeNode; TreeNode* createTree() { char ch; TreeNode* root; scanf("%c", &ch); if (ch == '#') { return NULL; } root = (TreeNode*)malloc(sizeof(TreeNode)); root->data = ch; root->left = createTree(); root->right = createTree(); return root; } void digui(TreeNode* root) { if (root == NULL) { return; } digui(root->left); printf("%c ", root->data); digui(root->right); } typedef struct StackNode { TreeNode* tree; struct StackNode* next; } StackNode; typedef struct Stack { StackNode* top; int size; } Stack; Stack* createStack() { Stack* stack = (Stack*)malloc(sizeof(Stack)); stack->top = NULL; stack->size = 0; return stack; } void push(Stack* stack, TreeNode* tree) { StackNode* node; node = (StackNode*)malloc(sizeof(StackNode)); node->tree = tree; node->next = stack->top; stack->top = node; stack->size++; } TreeNode* pop(Stack* stack) { TreeNode* tree; StackNode* temp; if (stack->size == 0) { return NULL; } tree = stack->top->tree; temp = stack->top; stack->top = stack->top->next; stack->size--; free(temp); return tree; } void feidigui(TreeNode* root) { Stack* stack; TreeNode* p; stack = createStack(); p = root; while (p != NULL || stack->size != 0) { while (p != NULL) { push(stack, p); p = p->left; } if (stack->size != 0) { p = pop(stack); printf("%c ", p->data); p = p->right; } } } int getHeight(TreeNode* root) { int leftHeight,rightHeight,max; if (root == NULL) { return 0; } leftHeight = getHeight(root->left); rightHeight = getHeight(root->right); max=leftHeight>rightHeight?leftHeight:rightHeight; return max+1; }

最新推荐

recommend-type

在树莓派4B上,在ubuntu20.04中设置包含ros节点的文件自启动

在树莓派4B上,在ubuntu20.04中设置包含ros节点的文件自启动
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例

![MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例](https://img-blog.csdnimg.cn/img_convert/007dbf114cd10afca3ca66b45196c658.png) # 1. MATLAB矩阵方程求解理论基础** MATLAB中矩阵方程求解是数值分析中一个重要的课题。矩阵方程的形式一般为`Ax = b`,其中`A`是一个系数矩阵,`x`是未知向量,`b`是常数向量。求解矩阵方程的方法有很多,包括直接求解法和迭代求解法。 直接求解法通过对系数矩阵`A`进行分解,将矩阵方程转化为求解三角形方程组或线性方程组,从而得到未知向量`x`。常见
recommend-type

abap dialog单选框画屏

在ABAP中,可以使用Dialog Programming来创建屏幕和用户界面。要创建一个ABAP Dialog单选框画屏,可以按照以下步骤进行操作: 1. 首先,在ABAP编辑器中创建一个新的屏幕画面(Screen Painter)。 2. 在屏幕画面上,选择“元素”工具栏中的“单选按钮”(Radio Button)工具。 3. 在屏幕上点击并拖动鼠标,绘制一个单选按钮的区域。 4. 在属性窗口中,为单选按钮指定一个唯一的名称和描述。 5. 可以选择设置单选按钮的默认状态(选中或未选中)。 6. 如果需要,可以在屏幕上添加其他的单选按钮。 7. 完成屏幕设计后,保存并激活屏幕画面。 在A
recommend-type

藏经阁-玩转AIGC与应用部署-92.pdf

"《藏经阁-玩转AIGC与应用部署-92》是一本专为阿里云开发者设计的电子手册,聚焦于人工智能生成内容(AIGC)在传媒、电商、影视等行业中的应用与技术探讨。作者张亦驰(怀潜)和丁小虎(脑斧),以及阿里云的AnalyticDB、函数计算FC和大数据AI技术团队,共同分享了五篇深度技术文章。 书中的内容涵盖了以下几个关键知识点: 1. AIGC基础与应用:介绍了AIGC如何作为新兴的内容生产方式,通过大模型技术提高内容生产和创新性,如基于大模型的创作工具在实际场景中的应用。 2. 大模型实战:书中详细展示了如何利用Hologres(云数据库)结合大模型,如ChatGPT,来解决商家问题,实现智能化客服。通过Hologres+大模型,商家可以更高效地获取答案,提升服务质量。 3. AnalyticDB与LLM(大语言模型):阐述了如何利用AnalyticDB(ADB)构建企业专属的AIGC Chatbot,增强企业的自动化沟通能力。 4. 生产力提升:讨论了大模型如何解放人类生产力,从理论层面揭示了AIGC从概念到实际应用的转变,展现了其在内容生产中的革新作用。 5. 云产品部署实践:提供了具体的操作指南,例如5分钟内如何使用函数计算FC部署StableDiffusion服务,以及如何通过PAI一键部署AI绘画应用,让读者能够快速上手并进行云上实践。 6. 试用与学习资源:书中还鼓励读者尝试模型在线服务PAI-EAS和函数计算FC的免费试用,以便更好地理解和运用AIGC技术。 《藏经阁》不仅是技术指南,也是AIGC入门者和进阶者的宝典,帮助读者理解AIGC在智能时代的重要性和广泛应用,引导他们探索并掌握云上技术部署的实际操作。通过阅读这本书,读者不仅能深入了解AIGC的潜力,还能掌握阿里云提供的相关云产品,推动内容生产行业的创新发展。"