写一个四层的一维卷积代码
时间: 2023-04-10 08:04:10 浏览: 91
以下是一个四层的一维卷积代码的示例:
```python
import torch.nn as nn
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv1d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm1d(16),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv1d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm1d(32),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2))
self.layer3 = nn.Sequential(
nn.Conv1d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2))
self.layer4 = nn.Sequential(
nn.Conv1d(in_channels=64, out_channels=128, kernel_size=5, stride=1, padding=2),
nn.BatchNorm1d(128),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2))
self.fc = nn.Linear(128, 10)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
这是一个使用 PyTorch 框架实现的四层一维卷积神经网络,其中包含了四个卷积层和一个全连接层。每个卷积层都包含了卷积、批量归一化、ReLU 激活和最大池化操作。最后的全连接层将卷积层的输出映射到一个 10 维的向量,用于分类任务。
阅读全文