写一个四层的一维卷积代码,包含了relu和pooling,输入为batchsize=4,且向量为1280维度
时间: 2023-04-10 07:04:05 浏览: 102
以下是一个四层的一维卷积代码,包含了relu和pooling,输入为batchsize=4,且向量为1280维度的示例代码:
```python
import torch
import torch.nn as nn
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv1d(1280, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv1d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2))
self.layer3 = nn.Sequential(
nn.Conv1d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2))
self.layer4 = nn.Sequential(
nn.Conv1d(256, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2))
self.fc = nn.Linear(512, 10)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
model = ConvNet()
print(model)
```
这个示例代码中,我们使用了 PyTorch 框架来实现了一个四层的一维卷积神经网络,其中包含了 relu 和 pooling 操作。输入的张量大小为 (batch_size, 1280),输出的张量大小为 (batch_size, 10)。
阅读全文