from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D from keras.optimizers import Adam import matplotlib.pyplot as plt import shutil import os # 加载数据集 train_dir = 'path/to/train' val_dir = ''path/to /validation' test_dir = ''path/to /test' batch_size = 20 epochs = 20 img_height, img_width = 150, 150 train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) val_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical' ) val_generator = val_datagen.flow_from_directory( val_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical' ) test_generator = val_datagen.flow_from_directory( test_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical' ) model = Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dropout(0.5), Dense(512, activation='relu'), Dense(10, activation='softmax') ]) # 编译模型并指定优化器、损失函数和评估指标 model.compile( optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'] ) history = model.fit( train_generator, steps_per_epoch=train_generator.samples // batch_size, epochs=epochs, validation_data=val_generator, validation_steps=val_generator.samples // batch_size ) plt.plot(history.history['accuracy'], label='Training Accuracy') plt.plot(history.history['val_accuracy'], label='Validation Accuracy') plt.legend() plt.show()优化这段代码的验证集的准确率,并加上使用混淆矩阵分析该代码结果的代码
时间: 2023-12-27 13:04:10 浏览: 166
首先,在此代码中可以看到使用了ImageDataGenerator进行图像数据的增强,这是一个非常好的方式,但为了进一步提高验证集的准确率,可以尝试以下几个优化方式:
1. 使用更深的卷积神经网络,例如ResNet、Inception等,可以提高模型的表现力和泛化能力。
2. 调整学习率和优化器,尝试不同的学习率和优化器,例如使用SGD、AdamW等优化器,以及学习率衰减等技术。
3. 数据集扩充,可以通过更多的数据集扩充方式,例如旋转、剪切、缩放等,进一步增加数据集的多样性。
代码如下,使用混淆矩阵分析模型的结果:
```
import numpy as np
from sklearn.metrics import confusion_matrix
import seaborn as sns
# 评估模型
test_loss, test_acc = model.evaluate(test_generator, verbose=2)
print('Test accuracy:', test_acc)
# 预测结果
Y_pred = model.predict(test_generator)
y_pred = np.argmax(Y_pred, axis=1)
cm = confusion_matrix(test_generator.classes, y_pred)
# 可视化混淆矩阵
sns.heatmap(cm, cmap='Blues', annot=True, fmt='d', xticklabels=test_generator.class_indices, yticklabels=test_generator.class_indices)
plt.show()
```
阅读全文