spark sql加载kafka数据并将查询结果写出到kafka的执行过程
时间: 2023-05-03 09:00:54 浏览: 138
spark与kafka集成
可以使用Spark SQL集成Kafka功能来将查询结果写入Kafka,具体过程为:
1. 创建KafkaProducer,并指定Topic名称、消息Key的序列化方式、消息Value的序列化方式;
2. 使用Spark SQL查询需要输出到Kafka的数据,并将结果收集到Driver端;
3. 遍历查询结果,将每条记录转换成Kafka ProducerRecord,并将其发送到Kafka Topic中。
示例代码如下:
```python
from pyspark.sql import SparkSession
from pyspark.sql.functions import to_json, struct
from kafka import KafkaProducer
# 创建SparkSession
spark = SparkSession.builder.appName("Write to Kafka").getOrCreate()
# Kafka配置项
bootstrap_servers = "localhost:9092"
topic = "test"
key_serializer = "org.apache.kafka.common.serialization.StringSerializer"
value_serializer = "org.apache.kafka.common.serialization.StringSerializer"
# 创建KafkaProducer
producer = KafkaProducer(bootstrap_servers=bootstrap_servers,
key_serializer=key_serializer,
value_serializer=value_serializer)
# 查询需要输出到Kafka的数据
df = spark.sql("SELECT name, age FROM people")
# 将数据转换为JSON格式
df_json = df.select(to_json(struct(df.columns)).alias("value"))
# 遍历查询结果,将每条记录写入Kafka
for row in df_json.collect():
record = row["value"]
producer.send(topic=topic, value=record)
# 关闭KafkaProducer
producer.close()
# 关闭SparkSession
spark.stop()
```
阅读全文