用python和opencv的SVM和Hog实现对道路裂缝的类型识别(横向裂缝还是竖向裂缝),需要提取训练集和测试集的特征向量和标签,训练一个svm分类器,使用测试图像的特征向量预测样本标签
时间: 2024-02-09 21:10:09 浏览: 170
好的,下面是一个简单的实现步骤:
1. 准备训练集和测试集的图像数据,需要手动标注每个图像中的裂缝类型(横向或竖向)。
2. 对每个图像进行预处理,如调整图像大小、转换为灰度图像等。
3. 对每个图像提取HOG特征向量。
4. 将图像的特征向量和标签组成训练集和测试集。
5. 使用scikit-learn库中的svm模型训练一个SVM分类器。
6. 使用测试集的特征向量预测样本标签。
下面是一个代码示例:
```python
import cv2
import numpy as np
from sklearn import svm
from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, precision_score, recall_score
from skimage.feature import hog
# 准备训练集和测试集的图像数据和标签
train_images = []
train_labels = []
test_images = []
test_labels = []
# 读入训练集和测试集的图像数据
train_image_names = ['train_image_1.jpg', 'train_image_2.jpg', ...]
test_image_names = ['test_image_1.jpg', 'test_image_2.jpg', ...]
for image_name in train_image_names:
image = cv2.imread(image_name)
# 对图像进行预处理,如调整图像大小、转换为灰度图像等
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
resized = cv2.resize(gray, (64, 64))
# 提取图像的HOG特征向量
feature_vector = hog(resized, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), transform_sqrt=True, block_norm='L2-Hys')
# 添加到训练集
train_images.append(feature_vector)
train_labels.append(label) # 标签需要手动标注
for image_name in test_image_names:
image = cv2.imread(image_name)
# 对图像进行预处理,如调整图像大小、转换为灰度图像等
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
resized = cv2.resize(gray, (64, 64))
# 提取图像的HOG特征向量
feature_vector = hog(resized, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), transform_sqrt=True, block_norm='L2-Hys')
# 添加到测试集
test_images.append(feature_vector)
test_labels.append(label) # 标签需要手动标注
# 训练SVM分类器
clf = svm.SVC(kernel='linear')
clf.fit(train_images, train_labels)
# 预测测试集的标签
pred_labels = clf.predict(test_images)
# 计算分类器的性能指标
confusion = confusion_matrix(test_labels, pred_labels)
accuracy = accuracy_score(test_labels, pred_labels)
precision = precision_score(test_labels, pred_labels, average='macro')
recall = recall_score(test_labels, pred_labels, average='macro')
f1 = f1_score(test_labels, pred_labels, average='macro')
# 打印性能指标
print('Confusion Matrix:\n', confusion)
print('Accuracy:', accuracy)
print('Precision:', precision)
print('Recall:', recall)
print('F1 Score:', f1)
```
阅读全文