分别介绍一下 optimizer.zero_grad();loss.backward();loss.backward()
时间: 2024-05-22 13:15:38 浏览: 90
PyTorch上搭建简单神经网络实现回归和分类的示例.pdf
optimizer.zero_grad() 是 PyTorch 中的一个函数,用于将优化器中所有参数的梯度归零,以便进行下一次的反向传播计算。通常在每次计算完损失函数的梯度后,需要使用该函数来清空之前的梯度,避免对下一次反向传播计算造成影响。
loss.backward() 是 PyTorch 中的一个函数,用于计算损失函数关于模型参数的梯度。在训练模型时,通常需要计算损失函数的梯度,以便更新模型参数。该函数会自动计算梯度并将其存储在各个参数的 .grad 属性中。
optimizer.step() 是 PyTorch 中的一个函数,用于更新模型参数。在计算完损失函数的梯度后,通常需要使用该函数来更新模型参数。该函数会按照指定的优化算法更新模型参数,以使其朝着更优的方向前进。通常在调用 optimizer.zero_grad() 和 loss.backward() 后,需要使用该函数来更新模型参数。
阅读全文