这段代码的作用 self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step()
时间: 2024-05-29 12:15:45 浏览: 104
这段代码用于实现Actor-Critic算法中的Actor网络的参数更新。
首先,`self.actor_optimizer.zero_grad()`将Actor网络的梯度清零,以避免梯度累加导致错误的参数更新。
接着,`actor_loss.backward()`对Actor网络的损失函数进行反向传播,计算每个参数对损失函数的梯度。
最后,`self.actor_optimizer.step()`根据梯度下降法,利用优化器对Actor网络的参数进行更新。
相关问题
给出基于pytorch强化学习SAC算法对Swimmer-v3训练输出的policy.pth、actor.pth和critic.pth模型的代码,写出如何转化成tensorflow lite,并部署到esp32中
这是一个比较复杂的问题,需要分为几个步骤来完成。
首先,我们需要使用PyTorch实现SAC算法来训练Swimmer-v3环境。这个过程可以参考OpenAI Gym官方文档,具体实现代码如下:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import gym
import numpy as np
import random
# 定义策略网络
class Policy(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(Policy, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, action_dim)
def forward(self, state):
x = torch.relu(self.fc1(state))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义Q网络
class QNet(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(QNet, self).__init__()
self.fc1 = nn.Linear(state_dim+action_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=1)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义重要性采样函数
def logprob(mu, log_std, action):
var = torch.exp(2*log_std)
logp = -0.5 * torch.sum(torch.pow(action-mu, 2)/var + 2*log_std + np.log(2*np.pi), dim=1)
return logp
# 定义SAC算法
class SAC:
def __init__(self, env, state_dim, action_dim, hidden_dim=256, lr=0.001, gamma=0.99, tau=0.01, alpha=0.2, buffer_size=1000000, batch_size=256, target_entropy=None):
self.env = env
self.state_dim = state_dim
self.action_dim = action_dim
self.hidden_dim = hidden_dim
self.lr = lr
self.gamma = gamma
self.tau = tau
self.alpha = alpha
self.buffer_size = buffer_size
self.batch_size = batch_size
self.target_entropy = -action_dim if target_entropy is None else target_entropy
self.policy = Policy(state_dim, action_dim, hidden_dim).to(device)
self.policy_optimizer = optim.Adam(self.policy.parameters(), lr=lr)
self.q1 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.q2 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.q1_optimizer = optim.Adam(self.q1.parameters(), lr=lr)
self.q2_optimizer = optim.Adam(self.q2.parameters(), lr=lr)
self.value = QNet(state_dim, action_dim, hidden_dim).to(device)
self.value_optimizer = optim.Adam(self.value.parameters(), lr=lr)
self.memory = []
self.steps = 0
self.episodes = 0
def select_action(self, state, test=False):
state = torch.FloatTensor(state).to(device)
with torch.no_grad():
mu = self.policy(state)
log_std = torch.zeros_like(mu)
action = mu + torch.exp(log_std) * torch.randn_like(mu)
action = action.cpu().numpy()
return action if test else np.clip(action, self.env.action_space.low, self.env.action_space.high)
def update(self):
if len(self.memory) < self.batch_size:
return
state, action, reward, next_state, done = self.sample()
state = torch.FloatTensor(state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(-1).to(device)
next_state = torch.FloatTensor(next_state).to(device)
done = torch.FloatTensor(done).unsqueeze(-1).to(device)
with torch.no_grad():
next_action, next_log_prob = self.policy.sample(next_state)
next_q1 = self.q1(next_state, next_action)
next_q2 = self.q2(next_state, next_action)
next_q = torch.min(next_q1, next_q2) - self.alpha * next_log_prob
target_q = reward + (1-done) * self.gamma * next_q
q1 = self.q1(state, action)
q2 = self.q2(state, action)
value = self.value(state)
q1_loss = nn.MSELoss()(q1, target_q.detach())
q2_loss = nn.MSELoss()(q2, target_q.detach())
value_loss = nn.MSELoss()(value, torch.min(q1, q2).detach())
self.q1_optimizer.zero_grad()
q1_loss.backward()
self.q1_optimizer.step()
self.q2_optimizer.zero_grad()
q2_loss.backward()
self.q2_optimizer.step()
self.value_optimizer.zero_grad()
value_loss.backward()
self.value_optimizer.step()
with torch.no_grad():
new_action, new_log_prob = self.policy.sample(state)
q1_new = self.q1(state, new_action)
q2_new = self.q2(state, new_action)
q_new = torch.min(q1_new, q2_new) - self.alpha * new_log_prob
policy_loss = (self.alpha * new_log_prob - q_new).mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
self.alpha = max(0.01, self.alpha - 1e-4)
for target_param, param in zip(self.value.parameters(), self.q1.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for target_param, param in zip(self.value.parameters(), self.q2.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
self.steps += self.batch_size
if done.any():
self.episodes += done.sum().item()
def sample(self):
indices = np.random.randint(0, len(self.memory), size=self.batch_size)
state, action, reward, next_state, done = zip(*[self.memory[idx] for idx in indices])
return state, action, reward, next_state, done
def run(self, episodes=1000, render=False):
for episode in range(episodes):
state = self.env.reset()
episode_reward = 0
done = False
while not done:
if render:
self.env.render()
action = self.select_action(state)
next_state, reward, done, _ = self.env.step(action)
self.memory.append((state, action, reward, next_state, done))
self.update()
state = next_state
episode_reward += reward
print(f"Episode {episode}, Reward {episode_reward}")
self.save_model()
def save_model(self, path="./"):
torch.save(self.policy.state_dict(), path + "policy.pth")
torch.save(self.q1.state_dict(), path + "q1.pth")
torch.save(self.q2.state_dict(), path + "q2.pth")
def load_model(self, path="./"):
self.policy.load_state_dict(torch.load(path + "policy.pth"))
self.q1.load_state_dict(torch.load(path + "q1.pth"))
self.q2.load_state_dict(torch.load(path + "q2.pth"))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env = gym.make("Swimmer-v3")
sac = SAC(env, env.observation_space.shape[0], env.action_space.shape[0])
sac.run()
```
接下来,我们需要将训练好的模型导出为TensorFlow Lite模型。为此,我们需要使用ONNX将PyTorch模型转换为ONNX格式,然后使用TensorFlow Lite Converter将ONNX模型转换为TensorFlow Lite模型。具体实现代码如下:
```python
import onnx
from onnx_tf.backend import prepare
import tensorflow as tf
from tensorflow import lite
# 将PyTorch模型转换为ONNX格式
model = SAC(env, env.observation_space.shape[0], env.action_space.shape[0])
model.load_model()
dummy_input = torch.randn(1, env.observation_space.shape[0])
torch.onnx.export(model.policy, dummy_input, "policy.onnx", export_params=True)
# 将ONNX模型转换为TensorFlow Lite模型
onnx_model = onnx.load("policy.onnx")
tf_model = prepare(onnx_model)
tflite_model = lite.TFLiteConverter.from_session(tf_model.session).convert()
# 保存TensorFlow Lite模型
with open("policy.tflite", "wb") as f:
f.write(tflite_model)
```
最后,我们需要将TensorFlow Lite模型部署到ESP32中。首先,需要安装ESP-IDF开发环境。然后,我们可以使用ESP32的TensorFlow Lite for Microcontrollers库来加载和运行模型。具体实现代码如下:
```c
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
// 定义模型文件名
#define MODEL_FILENAME "/path/to/policy.tflite"
// 定义输入输出张量的数量和形状
#define INPUT_TENSOR_NUM 1
#define INPUT_TENSOR_HEIGHT 1
#define INPUT_TENSOR_WIDTH 8
#define OUTPUT_TENSOR_NUM 1
#define OUTPUT_TENSOR_HEIGHT 1
#define OUTPUT_TENSOR_WIDTH 2
int main()
{
// 加载模型
const tflite::Model* model = tflite::GetModel(MODEL_FILENAME);
if (model == nullptr) {
return -1;
}
// 创建解释器和张量分配器
static tflite::MicroInterpreter interpreter(model, tflite::AllOpsResolver(), nullptr, nullptr);
interpreter.AllocateTensors();
// 获取输入输出张量
TfLiteTensor* input = interpreter.input(0);
input->dims->data[0] = INPUT_TENSOR_HEIGHT;
input->dims->data[1] = INPUT_TENSOR_WIDTH;
input->type = kTfLiteFloat32;
TfLiteTensor* output = interpreter.output(0);
output->dims->data[0] = OUTPUT_TENSOR_HEIGHT;
output->dims->data[1] = OUTPUT_TENSOR_WIDTH;
output->type = kTfLiteFloat32;
// 运行模型
float input_data[INPUT_TENSOR_HEIGHT][INPUT_TENSOR_WIDTH] = {0.0};
float output_data[OUTPUT_TENSOR_HEIGHT][OUTPUT_TENSOR_WIDTH] = {0.0};
input->data.f = reinterpret_cast<float*>(input_data);
output->data.f = reinterpret_cast<float*>(output_data);
interpreter.Invoke();
// 打印输出结果
printf("Output: %f %f\n", output_data[0][0], output_data[0][1]);
return 0;
}
```
需要注意的是,ESP32的TensorFlow Lite for Microcontrollers库只支持一小部分的TensorFlow Lite操作,因此在将模型转换为TensorFlow Lite格式时需要使用支持的操作。如果模型中包含不支持的操作,可以尝试使用TensorFlow Lite for Microcontrollers的自定义操作接口来实现。
多智能体编队actor-critic pytorch代码
以下是一个简单的多智能体编队actor-critic算法的PyTorch实现代码。该代码演示了如何使用actor-critic算法来训练多个智能体以形成编队。该代码使用一个简单的环境,该环境包含一个目标点和多个智能体,智能体的任务是在不碰撞的情况下尽可能接近目标点。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import random
# 定义一个智能体类
class Agent:
def __init__(self, state_size, action_size, agent_id, num_agents):
self.state_size = state_size
self.action_size = action_size
self.agent_id = agent_id
self.num_agents = num_agents
# 定义actor网络和critic网络
self.actor = Actor(state_size, action_size)
self.critic = Critic(state_size)
# 定义优化器
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=0.001)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=0.001)
# 定义经验回放缓冲区
self.memory = ReplayBuffer(action_size)
def act(self, state):
state = torch.from_numpy(state).float().unsqueeze(0)
action_probs = F.softmax(self.actor(state), dim=1)
action_probs = action_probs.detach().numpy().squeeze()
action = np.random.choice(self.action_size, p=action_probs)
return action
def learn(self, experiences, gamma):
states, actions, rewards, next_states, dones = experiences
# 计算critic网络的损失
Qvals = self.critic(states)
Qvals_next = self.critic(next_states)
Qval = Qvals.gather(1, actions)
Qval_next = rewards + gamma * Qvals_next.max(1)[0].unsqueeze(1) * (1 - dones)
critic_loss = F.mse_loss(Qval, Qval_next.detach())
# 更新critic网络
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# 计算actor网络的损失
probs = F.softmax(self.actor(states), dim=1)
log_probs = torch.log(probs.gather(1, actions))
Qvals = self.critic(states)
advantages = Qvals.detach() - Qvals.mean()
actor_loss = -(log_probs * advantages).mean()
# 更新actor网络
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# 定义一个actor网络
class Actor(nn.Module):
def __init__(self, state_size, action_size):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_size, 32)
self.fc2 = nn.Linear(32, 64)
self.fc3 = nn.Linear(64, action_size)
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义一个critic网络
class Critic(nn.Module):
def __init__(self, state_size):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_size, 32)
self.fc2 = nn.Linear(32, 64)
self.fc3 = nn.Linear(64, 1)
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义一个经验回放缓冲区
class ReplayBuffer:
def __init__(self, action_size, buffer_size=10000, batch_size=128):
self.action_size = action_size
self.buffer_size = buffer_size
self.batch_size = batch_size
self.memory = []
self.position = 0
def add(self, state, action, reward, next_state, done):
experience = (state, action, reward, next_state, done)
if len(self.memory) < self.buffer_size:
self.memory.append(None)
self.memory[self.position] = experience
self.position = (self.position + 1) % self.buffer_size
def sample(self):
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e[0] for e in experiences if e is not None])).float()
actions = torch.from_numpy(np.vstack([e[1] for e in experiences if e is not None])).long()
rewards = torch.from_numpy(np.vstack([e[2] for e in experiences if e is not None])).float()
next_states = torch.from_numpy(np.vstack([e[3] for e in experiences if e is not None])).float()
dones = torch.from_numpy(np.vstack([e[4] for e in experiences if e is not None]).astype(np.uint8)).float()
return (states, actions, rewards, next_states, dones)
# 定义一个环境类
class Env:
def __init__(self, num_agents):
self.num_agents = num_agents
self.state_size = 4
self.action_size = 2
self.target_pos = np.array([0.0, 0.0])
self.agent_pos = np.random.uniform(-1, 1, size=(self.num_agents, 2))
def reset(self):
self.target_pos = np.array([0.0, 0.0])
self.agent_pos = np.random.uniform(-1, 1, size=(self.num_agents, 2))
obs = np.hstack([self.agent_pos, self.target_pos])
return obs
def step(self, actions):
actions = np.clip(actions, -1, 1)
self.agent_pos += actions
self.agent_pos = np.clip(self.agent_pos, -1, 1)
obs = np.hstack([self.agent_pos, self.target_pos])
rewards = np.zeros(self.num_agents)
for i in range(self.num_agents):
dist = np.linalg.norm(self.agent_pos[i] - self.target_pos)
if dist < 0.1:
rewards[i] = 1
dones = np.zeros(self.num_agents)
return obs, rewards, dones
# 定义一个多智能体编队类
class MultiAgentFormation:
def __init__(self, num_agents):
self.env = Env(num_agents)
self.num_agents = num_agents
self.state_size = self.env.state_size * self.num_agents
self.action_size = self.env.action_size
self.gamma = 0.99
self.agents = [Agent(self.env.state_size, self.env.action_size, i, self.num_agents) for i in range(self.num_agents)]
def train(self, num_episodes=1000, max_t=1000):
for i_episode in range(num_episodes):
obs = self.env.reset()
for t in range(max_t):
actions = []
for i in range(self.num_agents):
action = self.agents[i].act(obs[i])
actions.append(action)
next_obs, rewards, dones = self.env.step(actions)
for i in range(self.num_agents):
self.agents[i].memory.add(obs[i], actions[i], rewards[i], next_obs[i], dones[i])
obs = next_obs
if len(self.agents[0].memory) > self.agents[0].memory.batch_size:
for agent in self.agents:
experiences = agent.memory.sample()
agent.learn(experiences, self.gamma)
if np.any(dones):
break
# 测试
ma = MultiAgentFormation(num_agents=3)
ma.train()
```
阅读全文