生成暗通道先验的python代码
时间: 2023-10-09 09:16:42 浏览: 134
以下是一个生成暗通道先验的Python代码示例:
```python
import numpy as np
import cv2
def get_dark_channel(img, patch_size):
# 计算暗通道图像
b, g, r = cv2.split(img)
min_channel = cv2.min(cv2.min(r, g), b)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (patch_size, patch_size))
dark_channel = cv2.erode(min_channel, kernel)
return dark_channel
def get_atmosphere(img, dark_channel, top_percent):
# 从暗通道图像中获取大气光值
# 按照暗通道像素值排序,取前top_percent%的像素点
pixel_num = dark_channel.shape[0] * dark_channel.shape[1]
flat_dark = dark_channel.reshape(pixel_num)
flat_img = img.reshape(pixel_num, 3)
indices = np.argsort(-flat_dark)
top_num = int(top_percent / 100.0 * pixel_num)
top_indices = indices[:top_num]
top_pixels = flat_img[top_indices]
atmosphere = np.max(top_pixels, axis=0)
return atmosphere
def get_transmission(img, atmosphere, omega, patch_size):
# 计算透射率
b, g, r = cv2.split(img.astype(np.float64))
transmission = 1.0 - omega * get_dark_channel(img / atmosphere, patch_size)
transmission = np.clip(transmission, 0, 1)
return transmission
def dehaze(img, omega=0.95, patch_size=15, top_percent=0.1):
# 去雾
dark_channel = get_dark_channel(img, patch_size)
atmosphere = get_atmosphere(img, dark_channel, top_percent)
transmission = get_transmission(img, atmosphere, omega, patch_size)
result = np.zeros(img.shape, img.dtype)
for i in range(3):
result[:, :, i] = (img[:, :, i] - atmosphere[i]) / np.maximum(transmission, 0.1) + atmosphere[i]
return result
# 测试代码
img = cv2.imread('haze_image.jpg')
result = dehaze(img)
cv2.imwrite('dehaze_image.jpg', result)
```
该代码实现了以下步骤:
1. 通过计算每个像素点的RGB三个通道的最小值,得到暗通道图像。
2. 从暗通道图像中获取大气光值,即暗通道像素值最大的前top_percent%的像素点的RGB三个通道的最大值。
3. 计算透射率,即每个像素点在RGB三个通道的透射率的最小值,通过透射率去除雾霾。
4. 对去除雾霾后的RGB三个通道进行修复,使图像看起来更自然。
这是一种简单有效的暗通道先验去雾方法。
阅读全文