如何绕开from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense这些库,我的python无法调用这些库
时间: 2024-02-25 07:51:16 浏览: 175
如果你无法使用 `tensorflow.keras` 库中的模块,你可以尝试使用其他深度学习框架,例如PyTorch或CNTK,或者使用更基础的Python库来手动实现这些层的功能。
以下是一个使用基础Python库手动实现CNN模型的示例:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义卷积层
def conv1d(x, w, b, stride=1, padding=0):
n, c, l = x.shape
f, c, k = w.shape
p = padding
out_l = int(np.floor((l + 2*p - k) / stride)) + 1
# 对输入数据进行padding
x_pad = np.pad(x, ((0,0),(0,0),(p,p)), 'constant')
# 定义输出
out = np.zeros((n, f, out_l))
# 卷积计算
for i in range(out_l):
x_window = x_pad[:, :, (i*stride):(i*stride+k)]
for j in range(f):
out[:,j,i] = np.sum(x_window * w[j,:,:], axis=(1,2)) + b[j]
return out
# 定义max pooling层
def max_pool1d(x, pool_size=2, stride=None):
n, c, l = x.shape
if stride is None:
stride = pool_size
out_l = int(np.floor((l - pool_size) / stride)) + 1
# 定义输出
out = np.zeros((n, c, out_l))
# pooling计算
for i in range(out_l):
x_window = x[:, :, (i*stride):(i*stride+pool_size)]
out[:,:,i] = np.max(x_window, axis=2)
return out
# 定义全连接层
def linear(x, w, b):
return np.dot(x, w) + b
# 定义ReLU激活函数
def relu(x):
return np.maximum(0, x)
# 生成正弦函数数据
x = np.linspace(0, 50, 500)
y = np.sin(x)
# 将数据变为3D张量
X = y.reshape(-1, 500, 1)
# 定义模型参数
W1 = np.random.randn(32, 1, 3)
b1 = np.zeros((32,))
W2 = np.random.randn(64, 32, 3)
b2 = np.zeros((64,))
W3 = np.random.randn(256, 64)
b3 = np.zeros((256,))
W4 = np.random.randn(1, 256)
b4 = np.zeros((1,))
# 定义模型
def model(X):
out = conv1d(X, W1, b1, stride=1, padding=0)
out = relu(out)
out = max_pool1d(out, pool_size=2, stride=None)
out = conv1d(out, W2, b2, stride=1, padding=0)
out = relu(out)
out = max_pool1d(out, pool_size=2, stride=None)
out = out.reshape((-1, 256))
out = linear(out, W3, b3)
out = relu(out)
out = linear(out, W4, b4)
return out
# 定义损失函数和优化器
def mse_loss(pred, target):
return np.mean(np.square(pred - target))
def sgd_optimizer(grads, lr=0.01):
for param, grad in grads:
param -= lr * grad
# 训练模型
epochs = 50
batch_size = 16
lr = 0.01
num_batches = X.shape[0] // batch_size
for epoch in range(epochs):
for i in range(num_batches):
X_batch = X[i*batch_size:(i+1)*batch_size]
y_batch = y[i*batch_size:(i+1)*batch_size]
# 前向传播
pred = model(X_batch)
loss = mse_loss(pred, y_batch)
# 反向传播
grads = []
dL_dy = 2 * (pred - y_batch) / batch_size
grads.append((W4, np.dot(model(X_batch).T, dL_dy)))
grads.append((b4, np.sum(dL_dy, axis=0, keepdims=True)))
dL_dx = np.dot(dL_dy, W4.T)
dL_dx = relu(dL_dx)
grads.append((W3, np.dot(model(X_batch).T, dL_dx)))
grads.append((b3, np.sum(dL_dx, axis=0, keepdims=True)))
dL_dx = dL_dx.reshape((-1, 64, 4))
dL_dx = max_pool1d(dL_dx, pool_size=2, stride=None)
dL_dx = dL_dx.reshape((-1, 256))
dL_dx = relu(dL_dx)
grads.append((W2, np.dot(max_pool1d(model(X_batch), pool_size=2, stride=None).T, dL_dx)))
grads.append((b2, np.sum(dL_dx, axis=0, keepdims=True)))
dL_dx = np.dot(dL_dx, W2.T)
dL_dx = relu(dL_dx)
grads.append((W1, np.dot(conv1d(X_batch, W1, b1, stride=1, padding=0).T, dL_dx)))
grads.append((b1, np.sum(dL_dx, axis=0, keepdims=True)))
# 更新模型参数
sgd_optimizer(grads, lr=lr)
print('Epoch: {}, Loss: {:.4f}'.format(epoch+1, loss))
# 预测结果并可视化
y_pred = model(X).flatten()
plt.plot(x, y, label='Ground Truth')
plt.plot(x, y_pred, label='Predictions')
plt.legend()
plt.show()
```
需要注意的是,这个示例代码仅仅是一个简单的实现,它可能不如 `tensorflow.keras` 库中的模块稳定或高效。如果你需要更复杂的模型或更高效的实现,建议考虑使用其他深度学习框架或尝试解决你的 `tensorflow.keras` 库调用问题。