Apriori用Python代码实现
时间: 2023-11-05 15:14:45 浏览: 84
好的,以下是使用 Python 实现 Apriori 算法的代码示例:
```python
# 导入所需库
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
# 读入数据集
data = pd.read_csv('data.csv')
# 将数据转为适应 Apriori 算法的格式
basket_sets = data.groupby(['Transaction', 'Item'])['Item'].count().unstack().fillna(0)
# 使用 Apriori 算法获取频繁项集
frequent_items = apriori(basket_sets, min_support=0.2, use_colnames=True)
# 使用关联规则确定项集之间的关系及其强度
association_rules(frequent_items, metric="lift", min_threshold=1)
```
请注意,这只是个示例代码,实际使用时需要根据数据集的实际情况调整 min_support 和 min_threshold 等参数。
相关问题
Apriori算法python代码实现
我可以回答这个问题。以下是 Apriori 算法的 Python 代码实现示例:
```python
def generate_C1(data_set):
C1 = []
for transaction in data_set:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return list(map(frozenset, C1))
def scan_D(data_set, candidates, min_support):
ss_cnt = {}
for tid in data_set:
for can in candidates:
if can.issubset(tid):
if not can in ss_cnt:
ss_cnt[can] = 1
else:
ss_cnt[can] += 1
num_items = float(len(data_set))
ret_list = []
support_data = {}
for key in ss_cnt:
support = ss_cnt[key] / num_items
if support >= min_support:
ret_list.insert(0, key)
support_data[key] = support
return ret_list, support_data
def apriori_gen(Lk, k):
ret_list = []
len_Lk = len(Lk)
for i in range(len_Lk):
for j in range(i + 1, len_Lk):
L1 = list(Lk[i])[:k - 2]
L2 = list(Lk[j])[:k - 2]
L1.sort()
L2.sort()
if L1 == L2:
ret_list.append(Lk[i] | Lk[j])
return ret_list
def apriori(data_set, min_support=0.5):
C1 = generate_C1(data_set)
D = list(map(set, data_set))
L1, support_data = scan_D(D, C1, min_support)
L = [L1]
k = 2
while len(L[k - 2]) > 0:
Ck = apriori_gen(L[k - 2], k)
Lk, sup_k = scan_D(D, Ck, min_support)
support_data.update(sup_k)
L.append(Lk)
k += 1
return L, support_data
```
请注意,这只是一个示例,实际上可以有多种不同的实现方式。
apriori算法python代码实现
下面是Apriori算法的Python实现:
```python
def loadDataSet():
return [[1,3,4],[2,3,5],[1,2,3,5],[2,5]]
def createC1(dataSet):
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return map(frozenset, C1)
def scanD(D, Ck, minSupport):
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if not can in ssCnt: ssCnt[can]=1
else: ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key]/numItems
if support >= minSupport:
retList.insert(0,key)
supportData[key] = support
return retList, supportData
def aprioriGen(Lk, k): #creates Ck
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i+1, lenLk):
L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
L1.sort(); L2.sort()
if L1==L2:
retList.append(Lk[i] | Lk[j])
return retList
def apriori(dataSet, minSupport = 0.5):
C1 = createC1(dataSet)
D = map(set, dataSet)
L1, supportData = scanD(D, C1, minSupport)
L = [L1]
k = 2
while (len(L[k-2]) > 0):
Ck = aprioriGen(L[k-2], k)
Lk, supK = scanD(D, Ck, minSupport)
supportData.update(supK)
L.append(Lk)
k += 1
return L, supportData
dataSet = loadDataSet()
L, suppData = apriori(dataSet, minSupport=0.5)
print(L)
print(suppData)
```
在这个代码中,我们首先定义了一个数据集。然后我们使用`createC1()`函数创建了初始候选项集。接下来,我们使用`scanD()`函数计算支持度,并得到频繁项集。接着使用`aprioriGen()`函数生成新的候选项集,并使用它计算新的支持度。最后,我们使用`apriori()`函数得到所有的频繁项集以及他们的支持度。
阅读全文