用Pytorch+LeNet生成图像分类算法”
时间: 2023-12-16 21:06:30 浏览: 123
本教程将介绍如何使用PyTorch实现LeNet图像分类算法。LeNet是一个经典的卷积神经网络,最初用于手写数字识别。它是深度学习领域的重要里程碑之一,为后来的卷积神经网络打下了基础。
在本教程中,我们将使用PyTorch实现LeNet来对Fashion-MNIST数据集进行图像分类。Fashion-MNIST是一个包含10个类别的衣服图像数据集,每个类别有6000个训练样本和1000个测试样本。我们将使用LeNet对每个图像进行分类。
首先,我们需要导入所需的库。
``` python
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
```
接下来,我们将定义一些超参数,如批量大小、学习率和训练周期数。
``` python
# Hyper-parameters
batch_size = 100
learning_rate = 0.001
num_epochs = 10
```
然后,我们需要加载Fashion-MNIST数据集。我们将对数据进行归一化和数据增强,以提高模型的性能。
``` python
# Fashion-MNIST dataset
train_dataset = torchvision.datasets.FashionMNIST(root='./data',
train=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(28, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]),
download=True)
test_dataset = torchvision.datasets.FashionMNIST(root='./data',
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]))
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
```
接下来,我们将定义LeNet模型。LeNet包含两个卷积层和三个全连接层。我们将使用ReLU作为激活函数,并在每个卷积层之间添加最大池化层。
``` python
# LeNet-5
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=2)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.relu = nn.ReLU()
def forward(self, x):
out = self.conv1(x)
out = self.relu(out)
out = self.pool1(out)
out = self.conv2(out)
out = self.relu(out)
out = self.pool2(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
return out
model = LeNet()
```
接下来,我们将定义损失函数和优化器。
``` python
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
```
最后,我们将训练和测试模型。
``` python
# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
# Test the model
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
```
这就是如何使用PyTorch实现LeNet图像分类算法。在本教程中,我们使用LeNet对Fashion-MNIST数据集进行了分类。您可以使用相同的方法来实现其他图像分类任务。
阅读全文