c++ 写一个dijkstra算法实现

时间: 2023-09-07 08:05:13 浏览: 79
### 回答1: 好的,关于 Dijkstra 算法的实现,我可以给你一些指导。 Dijkstra 算法是一种解决单源最短路径问题的经典算法。它的主要思路是从源点开始,逐步扩展搜索的范围,直到覆盖所有节点为止。在搜索的过程中,维护每个节点到源点的最短距离,并选择当前距离最小的未被访问的节点进行扩展。具体实现时,可以使用一个优先队列(例如 C++ STL 中的 priority_queue)来维护未被访问的节点,以便每次选择距离最小的节点进行扩展。 以下是一个简单的 C++ 实现: ``` #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; const int INF = 0x3f3f3f3f; struct Edge { int v, w; Edge(int _v, int _w) : v(_v), w(_w) {} }; vector<Edge> adj[1000]; int dist[1000]; bool vis[1000]; void dijkstra(int s) { memset(dist, INF, sizeof(dist)); memset(vis, false, sizeof(vis)); dist[s] = 0; priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; pq.push({0, s}); while (!pq.empty()) { int u = pq.top().second; pq.pop(); if (vis[u]) continue; vis[u] = true; for (const auto& e : adj[u]) { int v = e.v, w = e.w; if (dist[u] + w < dist[v]) { dist[v] = dist[u] + w; pq.push({dist[v], v}); } } } } int main() { int n, m, s; cin >> n >> m >> s; for (int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; adj[u].emplace_back(v, w); } dijkstra(s); for (int i = 1; i <= n; i++) { if (dist[i] == INF) cout << "INF\n"; else cout << dist[i] << "\n"; } return 0; } ``` 这段代码实现了 Dijkstra 算法,并且支持读入有向图的边权信息,计算从源点 s 到所有点的最短距离,并输出结果。具体来说,首先初始化距离数组 dist 为正无穷,将源点的距离设为 0,然后使用一个优先队列 pq 维护未被访问的节点,每次选择距离最小的节点 u 进行扩展,并更新其它节点的距离。在更新节点距离时,需要判断是否需要松弛(relax)操作,即将当前节点 u 到其邻居节点 v 的边权加到距离 dist[v] ### 回答2: Dijkstra算法是一种解决单源最短路径问题的经典算法。它通过逐步找到从起点到其他所有顶点的最短路径来实现。 具体实现Dijkstra算法的步骤如下: 1. 创建一个顶点集合和一个距离集合。初始化距离集合,起点距离为0,其他顶点距离为无穷大。 2. 在顶点集合中选择一个顶点作为当前顶点,初始化时选择起点。 3. 遍历当前顶点的所有邻接顶点,计算从起点经过当前顶点到达邻接顶点的距离,如果这个距离小于邻接顶点的当前最短距离,更新邻接顶点的最短距离。 4. 从距离集合中选择一个未被访问的顶点,即距离最小的顶点,作为新的当前顶点,重复步骤3。 5. 重复步骤3和4,直到所有顶点都被访问过或者没有可以选择的顶点为止。 下面是一个用300字回答的Dijkstra算法实现的伪代码: 1. 初始化距离集合,将起点距离设为0,其他顶点距离设为无穷大。 2. 创建一个顶点集合,将起点加入集合中。 3. while (顶点集合非空) { 4. 选择距离集合中最小的顶点作为当前顶点。 5. 遍历当前顶点的所有邻接顶点 { 6. 计算通过当前顶点到达邻接顶点的距离。 7. 如果这个距离小于邻接顶点的当前最短距离,更新邻接顶点的最短距离。 8. } 9. 将当前顶点从顶点集合中移除。 10. } 11. 输出最短距离集合。 这个伪代码描述了Dijkstra算法的基本流程,具体实现时可能需要添加一些数据结构或辅助函数来实现顶点、距离集合等的管理。实际代码实现时可以根据具体语言和需要进行适当调整。 ### 回答3: Dijkstra算法是一种用于求解单源最短路径的图算法。它适用于带有非负权值的有向图或无向图。 下面是一个简单的Dijkstra算法的实现: 1. 创建一个数组distances,用于存储起始节点到每个节点的最短路径距离。初始时,将起始节点的距离设置为0,将其他节点的距离设置为正无穷大。 2. 创建一个集合visited,用于记录已经访问过的节点。 3. 创建一个优先队列,用于按照节点距离的大小进行排序。 4. 将起始节点加入到优先队列中。 5. 当优先队列不为空时,重复以下步骤: 1) 从优先队列中取出一个节点node,将其标记为已访问。 2) 遍历节点node的邻居节点neighbor: - 计算起始节点到neighbor节点的距离:distance = distances[node] + edge(node, neighbor)。其中edge(node, neighbor)表示node到neighbor的边的权值。 - 如果distance小于distances[neighbor],更新distances[neighbor]的值,并将neighbor节点加入到优先队列中。 6. 循环结束后,distances数组中存储的就是起始节点到每个节点的最短路径距离。 此外,还可以使用一个数组predecessors来记录最短路径中每个节点的前驱节点,以便后续构建最短路径。 以上就是一个简单的Dijkstra算法的实现。然而,实际应用中可能会有更多的优化措施,例如使用堆代替优先队列,以提高算法的效率。

相关推荐

最新推荐

recommend-type

Dijkstra算法最短路径的C++实现与输出路径

"Dijkstra算法最短路径的C++实现与输出路径" Dijkstra算法是解决单源最短路径问题的经典算法, 由荷兰计算机科学家Edsger W. Dijkstra在1956年提出。该算法可以解决从某个源点到其他所有顶点的最短路径问题。 ...
recommend-type

C++求所有顶点之间的最短路径(用Dijkstra算法)

在给定的文件信息中,提供了一个使用C++语言实现Dijkstra算法的示例代码。该代码定义了一个图类Graphlnk,用于存储图的邻接表表示,并提供了一些基本操作,如插入顶点、插入边、删除顶点、删除边等。 4. Floyd算法...
recommend-type

基于Dijkstra算法的最短路径实现与应用

Dijkstra算法是用于计算一个节点到其余所有节点最短路径的单源路径算法。我们先阐述Dijkstra算法的原理,在算法设计中,分别用邻接矩阵和邻接表存储带权有向图,并编写C++语言实现Dijkstra算法最短路径,用户只需...
recommend-type

C++用Dijkstra(迪杰斯特拉)算法求最短路径

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。...下面这篇文章就给大家介绍关于C++用Dijkstra算法(迪杰斯特拉算法)求最短路径的方法,下面来一起看看吧。
recommend-type

美国地图json文件,可以使用arcgis转为spacefile

美国地图json文件,可以使用arcgis转为spacefile
recommend-type

基于Springboot的医院信管系统

"基于Springboot的医院信管系统是一个利用现代信息技术和网络技术改进医院信息管理的创新项目。在信息化时代,传统的管理方式已经难以满足高效和便捷的需求,医院信管系统的出现正是适应了这一趋势。系统采用Java语言和B/S架构,即浏览器/服务器模式,结合MySQL作为后端数据库,旨在提升医院信息管理的效率。 项目开发过程遵循了标准的软件开发流程,包括市场调研以了解需求,需求分析以明确系统功能,概要设计和详细设计阶段用于规划系统架构和模块设计,编码则是将设计转化为实际的代码实现。系统的核心功能模块包括首页展示、个人中心、用户管理、医生管理、科室管理、挂号管理、取消挂号管理、问诊记录管理、病房管理、药房管理和管理员管理等,涵盖了医院运营的各个环节。 医院信管系统的优势主要体现在:快速的信息检索,通过输入相关信息能迅速获取结果;大量信息存储且保证安全,相较于纸质文件,系统节省空间和人力资源;此外,其在线特性使得信息更新和共享更为便捷。开发这个系统对于医院来说,不仅提高了管理效率,还降低了成本,符合现代社会对数字化转型的需求。 本文详细阐述了医院信管系统的发展背景、技术选择和开发流程,以及关键组件如Java语言和MySQL数据库的应用。最后,通过功能测试、单元测试和性能测试验证了系统的有效性,结果显示系统功能完整,性能稳定。这个基于Springboot的医院信管系统是一个实用且先进的解决方案,为医院的信息管理带来了显著的提升。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具

![字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具](https://pic1.zhimg.com/80/v2-3fea10875a3656144a598a13c97bb84c_1440w.webp) # 1. 字符串转 Float 性能调优概述 字符串转 Float 是一个常见的操作,在数据处理和科学计算中经常遇到。然而,对于大规模数据集或性能要求较高的应用,字符串转 Float 的效率至关重要。本章概述了字符串转 Float 性能调优的必要性,并介绍了优化方法的分类。 ### 1.1 性能调优的必要性 字符串转 Float 的性能问题主要体现在以下方面
recommend-type

Error: Cannot find module 'gulp-uglify

当你遇到 "Error: Cannot find module 'gulp-uglify'" 这个错误时,它通常意味着Node.js在尝试运行一个依赖了 `gulp-uglify` 模块的Gulp任务时,找不到这个模块。`gulp-uglify` 是一个Gulp插件,用于压缩JavaScript代码以减少文件大小。 解决这个问题的步骤一般包括: 1. **检查安装**:确保你已经全局安装了Gulp(`npm install -g gulp`),然后在你的项目目录下安装 `gulp-uglify`(`npm install --save-dev gulp-uglify`)。 2. **配置
recommend-type

基于Springboot的冬奥会科普平台

"冬奥会科普平台的开发旨在利用现代信息技术,如Java编程语言和MySQL数据库,构建一个高效、安全的信息管理系统,以改善传统科普方式的不足。该平台采用B/S架构,提供包括首页、个人中心、用户管理、项目类型管理、项目管理、视频管理、论坛和系统管理等功能,以提升冬奥会科普的检索速度、信息存储能力和安全性。通过需求分析、设计、编码和测试等步骤,确保了平台的稳定性和功能性。" 在这个基于Springboot的冬奥会科普平台项目中,我们关注以下几个关键知识点: 1. **Springboot框架**: Springboot是Java开发中流行的应用框架,它简化了创建独立的、生产级别的基于Spring的应用程序。Springboot的特点在于其自动配置和起步依赖,使得开发者能快速搭建应用程序,并减少常规配置工作。 2. **B/S架构**: 浏览器/服务器模式(B/S)是一种客户端-服务器架构,用户通过浏览器访问服务器端的应用程序,降低了客户端的维护成本,提高了系统的可访问性。 3. **Java编程语言**: Java是这个项目的主要开发语言,具有跨平台性、面向对象、健壮性等特点,适合开发大型、分布式系统。 4. **MySQL数据库**: MySQL是一个开源的关系型数据库管理系统,因其高效、稳定和易于使用而广泛应用于Web应用程序,为平台提供数据存储和查询服务。 5. **需求分析**: 开发前的市场调研和需求分析是项目成功的关键,它帮助确定平台的功能需求,如用户管理、项目管理等,以便满足不同用户群体的需求。 6. **数据库设计**: 数据库设计包括概念设计、逻辑设计和物理设计,涉及表结构、字段定义、索引设计等,以支持平台的高效数据操作。 7. **模块化设计**: 平台功能模块化有助于代码组织和复用,包括首页模块、个人中心模块、管理系统模块等,每个模块负责特定的功能。 8. **软件开发流程**: 遵循传统的软件生命周期模型,包括市场调研、需求分析、概要设计、详细设计、编码、测试和维护,确保项目的质量和可维护性。 9. **功能测试、单元测试和性能测试**: 在开发过程中,通过这些测试确保平台功能的正确性、模块的独立性和系统的性能,以达到预期的用户体验。 10. **微信小程序、安卓源码**: 虽然主要描述中没有详细说明,但考虑到标签包含这些内容,可能平台还提供了移动端支持,如微信小程序和安卓应用,以便用户通过移动设备访问和交互。 这个基于Springboot的冬奥会科普平台项目结合了现代信息技术和软件工程的最佳实践,旨在通过信息化手段提高科普效率,为用户提供便捷、高效的科普信息管理服务。