import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.linear_model import LinearRegression %matplotlib inline iris = load_iris() data = pd.DataFrame(iris.data) data.columns = ['sepal - length','sepal - width','petal - length','petal - width'] data.head(11)
时间: 2024-04-27 22:23:15 浏览: 167
pandas,matplotlib,numpy详解
这段代码首先导入了 pandas、numpy、matplotlib.pyplot、sklearn.datasets 和 sklearn.linear_model 等库。然后使用 load_iris 函数加载鸢尾花数据集,将数据集中的样本特征存储在一个名为 iris 的变量中。接着,用 pandas 库中的 DataFrame 类来创建一个数据框,数据框中的数据是 iris.data。然后,将每列的名称更改为 'sepal - length'、'sepal - width'、'petal - length' 和 'petal - width'。最后,使用 data.head(11) 显示数据框中前11行数据,以便对数据进行初步观察和分析。
阅读全文