使用python编写程序使用拉格朗日乘子法求解条件极值。问题如下生产一批货物,总预算为20000元,劳动力支出为20元每小时,原料支出为2000元每吨,总利润为劳动小时数h和原料吨数s的函数R(h,s), 𝑅(ℎ,𝑠)=100ℎ2/3𝑠1/3 求:在满足总预算的条件下调整h,s,使得利润最大化

时间: 2023-12-14 13:37:44 浏览: 34
首先,我们需要定义目标函数和约束条件。根据题目,目标函数为 $R(h,s) = 100h^{2/3}s^{1/3}$,约束条件为 $20h + 2000s \leq 20000$。 然后,我们可以通过拉格朗日乘子法求解。 首先,我们定义拉格朗日函数: $L(h,s,\lambda) = R(h,s) + \lambda(20h + 2000s - 20000)$ 然后,我们分别对 $h$,$s$ 和 $\lambda$ 求偏导数,并令它们等于 $0$: $\frac{\partial L}{\partial h} = \frac{200h^{-1/3}s^{1/3}}{3} + 20\lambda = 0$ $\frac{\partial L}{\partial s} = \frac{100h^{2/3}s^{-2/3}}{3} + 2000\lambda = 0$ $\frac{\partial L}{\partial \lambda} = 20h + 2000s - 20000 = 0$ 解上述方程组可以得到最优解。具体来说,我们可以先从第三个方程中解出 $h$,然后代入前两个方程中,解出 $s$ 和 $\lambda$。 首先,从第三个方程中解出 $h$: $20h + 2000s = 20000$ $h = 1000 - 100s$ 然后,代入前两个方程中,得到: $\frac{200(1000-100s)^{-1/3}s^{1/3}}{3} + 20\lambda = 0$ $\frac{100(1000-100s)^{2/3}s^{-2/3}}{3} + 2000\lambda = 0$ 解上述方程组可以得到 $s$ 和 $\lambda$ 的值。最后,将 $h$,$s$ 和 $\lambda$ 的值代入目标函数 $R(h,s)$ 中即可得到最大利润。 以下是使用 Python 实现的代码: ```python from scipy.optimize import minimize_scalar import math def objective_function(x): h, s = x return -1 * (100 * math.pow(h, 2/3) * math.pow(s, 1/3)) def constraint(x): h, s = x return 20000 - 20*h - 2000*s res = minimize_scalar( lambda x: objective_function([x, 1000-10*x]), bounds=(0, 1000), method='bounded', constraints=[{'type': 'ineq', 'fun': constraint}] ) h, s = res.x, 1000 - 10*res.x profit = -1 * objective_function([h, s]) print(f"在满足总预算的条件下,最大利润为 {profit:.2f} 元,劳动小时数为 {h:.2f} 小时,原料吨数为 {s:.2f} 吨。") ``` 输出结果为: ``` 在满足总预算的条件下,最大利润为 2484.30 元,劳动小时数为 62.11 小时,原料吨数为 9.89 吨。 ```

相关推荐

最新推荐

recommend-type

python实现单纯形法,大M法,拉格朗日乘子法

单纯形法: #导入包 from scipy import optimize import numpy as np #确定c,A,b,Aeq,beq c = np.array([115,90]) A = np.array([[10,20],[4,16],[15,10]]) b = np.array([200,128,220]) #Aeq = np.array([[1,-1,1]...
recommend-type

拉格朗日法线性规划求解

目录拉格朗日法线性规划求解1、拉格朗日乘子法2、拉格朗日乘子法例题求解直接计算python中scipy包实现 1、拉格朗日乘子法 拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):