return df.withColumn("_count", max("rank").over(merge_spec)) \ .withColumn("audit_created_tmstmp",F.when((F.col("_count") == 2) & (F.col("rank") == 1),F.lit(None).cast("timestamp")).otherwise(F.col("audit_created_tmstmp"))) \ .withColumn("audit_created_tmstmp",max("audit_created_tmstmp").over(merge_spec)) \ .drop("_count")转换为sql
时间: 2023-11-02 18:06:23 浏览: 68
以下是将给定的 PySpark 转换为 SQL 的过程:
```sql
SELECT
CASE
WHEN (_count = 2 AND rank = 1) THEN NULL
ELSE audit_created_tmstmp
END AS audit_created_tmstmp
FROM (
SELECT
*,
MAX(rank) OVER (PARTITION BY merge_spec) AS _count
FROM df
) tmp
WHERE audit_created_tmstmp = MAX(audit_created_tmstmp) OVER (PARTITION BY merge_spec)
```
相关问题
return df.withColumn("_count", max("rank").over(merge_spec)) \ .withColumn("audit_created_tmstmp",F.when((F.col("_count") == 2) & (F.col("rank") == 1),F.lit(None).cast("timestamp")).otherwise(F.col("audit_created_tmstmp"))) \ .withColumn("audit_created_tmstmp",max("audit_created_tmstmp").over(merge_spec)) \ .drop("_count")
这段代码的作用是:
1. 使用 PySpark 的 `withColumn` 方法向 `df` 数据框添加一列 `_count`,该列的值为 `rank` 列的最大值,并使用 `over()` 方法指定窗口规范 `merge_spec`。
2. 使用 PySpark 的 `withColumn` 方法向 `df` 数据框添加一列 `audit_created_tmstmp`,该列的值根据条件判断而定。如果 `_count` 列的值为 2 并且 `rank` 列的值为 1,则将该列的值设置为 `None`(即空值),否则将该列的值设置为原来的 `audit_created_tmstmp` 值。同样,使用 `over()` 方法指定窗口规范 `merge_spec`。
3. 使用 PySpark 的 `withColumn` 方法向 `df` 数据框添加一列 `audit_created_tmstmp`,该列的值为 `audit_created_tmstmp` 列的最大值,并使用 `over()` 方法指定窗口规范 `merge_spec`。
4. 使用 PySpark 的 `drop` 方法删除 `_count` 列。
其中,`over()` 方法指定了窗口规范 `merge_spec`,该规范定义了窗口的分区和排序方式。`merge_spec` 可以根据具体情况进行定义。
new_df_cols = new_df.columns old_df_cols = older_df.columns total = set(new_df_cols + old_df_cols) new_df = new_df.select(*self.fill_empty_colums(new_df_cols, total)).withColumn("row_priority",F.lit(0)) older_df = older_df.select(*self.fill_empty_colums(old_df_cols, total)).withColumn("row_priority",F.lit(1)) key_column = [F.col(column_name) for column_name in key_columns] merge_spec = Window.partitionBy(key_column).orderBy("row_priority") ranked_df=new_df.unionByName(older_df).withColumn("rank", F.rank().over(merge_spec)) return self.update_audit_created_column(ranked_df,key_column).where(F.col("rank") == 1).drop("rank", "row_priority")
这段代码用 PySpark 实现了对两个 DataFrame 进行合并和去重的操作,并添加了一些元数据信息。下面是使用 SQL 实现的代码:
```sql
-- 选取需要合并的列名
WITH new_cols AS (
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'new_df'
),
old_cols AS (
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'older_df'
),
cols AS (
SELECT DISTINCT COLUMN_NAME
FROM (
SELECT COLUMN_NAME FROM new_cols
UNION ALL
SELECT COLUMN_NAME FROM old_cols
)
),
-- 对 new_df 填充空缺的列,并添加 "row_priority" 列
new_df_filled AS (
SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 0 AS row_priority
FROM new_df
),
new_df_selected AS (
SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank
FROM (
-- 选取 new_df 中的列,包括填充空缺的列和 "row_priority" 列
SELECT col1, col2, ..., colN, row_priority
FROM new_df_filled
-- 生成 key_column 列,用于分组
CROSS JOIN (SELECT col1 AS key_column FROM new_df_filled) key_columns
)
),
-- 对 older_df 填充空缺的列,并添加 "row_priority" 列
old_df_filled AS (
SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 1 AS row_priority
FROM older_df
),
old_df_selected AS (
SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank
FROM (
-- 选取 older_df 中的列,包括填充空缺的列和 "row_priority" 列
SELECT col1, col2, ..., colN, row_priority
FROM old_df_filled
-- 生成 key_column 列,用于分组
CROSS JOIN (SELECT col1 AS key_column FROM old_df_filled) key_columns
)
),
-- 合并两个 DataFrame,并去重
merged_df AS (
SELECT * FROM new_df_selected
UNION ALL
SELECT * FROM old_df_selected
),
-- 选取合并后的第一行
final_df AS (
SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY rank) AS row_num
FROM merged_df
)
SELECT col1, col2, ..., colN
FROM final_df
WHERE row_num = 1
```
这段 SQL 代码的实现原理与 PySpark 代码相同,主要分为以下几个步骤:
1. 获取需要合并的列名。
2. 对 new_df 和 older_df 分别进行填充空缺列、添加 "row_priority" 列和选取列的操作,生成 new_df_selected 和 old_df_selected 两个数据集。
3. 将 two_df_selected 进行合并,并添加 rank 列,用于去重。
4. 选取合并后的第一行,得到最终的去重结果。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![gz](https://img-home.csdnimg.cn/images/20210720083447.png)