python图像批量添加数字水印
时间: 2023-07-11 15:50:44 浏览: 227
0; i < inputSize; ++i) {
int weightIndex = i + j * inputSize;
inputGradient[i] += gradient * weights[weightIndex];
weightGradient[weightIndex] += gradient * input[i];
}
}
}
private你可以使用Python的Pillow库来批量添加数字水印。以下是一个简单的示例代码:
```python
:
int inputSize;
int outputSize;
vector<double> weights;
vector<double> biases;
};
```
4. 定from PIL import Image, ImageDraw, ImageFont
import os
# 要添加水印的文件夹路径
folder_path = "/path义神经网络的类
```c++
class NeuralNetwork {
public:
NeuralNetwork() {
// 构建卷积层和/to/folder"
# 水印文字
watermark_text = "123"
# 水印字体
font = ImageFont.truetype("池化层
convolution1 = new ConvolutionLayer(kImageSize, kImageSize, 1, 5, 16);
arial.ttf", 36)
# 循环处理文件夹中的每张图片
for filename in os.listdir(folder_path):
if filename pooling1 = new PoolingLayer(convolution1->outputWidth, convolution1->outputHeight, convolution1->outputDepth, 2.endswith(".jpg") or filename.endswith(".png"):
# 打开图片
image_path = os.path.join(folder_path, filename)
);
convolution2 = new ConvolutionLayer(pooling1->outputWidth, pooling1->outputHeight, pooling1->outputDepth, 5, 32);
pooling2 = new PoolingLayer(convolution2->outputWidth, convolution2->outputHeight, convolution2-> image = Image.open(image_path)
# 添加水印
draw = ImageDraw.Draw(image)
draw.text((10, 10outputDepth, 2);
// 计算全连接层的输入大小
int fullyConnectedInputSize = pooling2->output), watermark_text, fill=(255, 255, 255), font=font)
# 保存图片
new_file_path =Width * pooling2->outputHeight * convolution2->outputDepth;
// 构建全连接层
fullyConnected1 = new os.path.join(folder_path, "watermarked_" + filename)
image.save(new_file_path)
```
这个示例代码会将 FullyConnectedLayer(fullyConnectedInputSize, 128);
fullyConnected2 = new FullyConnectedLayer(128, kNumClasses);
指定文件夹中的所有jpg和png图片添加数字水印,并保存为新的文件名。你可以根据需要修改水印内容、字体、位置等参数。
阅读全文