构建有防止梯度消失和梯度爆炸效果的一维densenet网络模型适用于keras
时间: 2023-10-21 08:03:56 浏览: 234
DenseNet:在Keras中实施DenseNet
下面是一个基于Keras的一维DenseNet网络模型,其中包含了防止梯度消失和梯度爆炸的方法,如Batch Normalization和梯度裁剪:
```python
from keras.models import Model
from keras.layers import Input, Dense, Conv1D, Dropout, concatenate, GlobalAveragePooling1D, BatchNormalization
from keras.optimizers import Adam
from keras.utils import plot_model
from keras import backend as K
def dense_block(x, layers, growth_rate):
for i in range(layers):
x1 = BatchNormalization()(x)
x1 = Conv1D(growth_rate, kernel_size=3, padding='same', activation='relu')(x1)
x1 = Dropout(0.5)(x1)
x = concatenate([x, x1])
return x
def transition_block(x, reduction):
x = BatchNormalization()(x)
x = Conv1D(int(K.int_shape(x)[2] * reduction), kernel_size=1, padding='same', activation='relu')(x)
x = Dropout(0.5)(x)
x = GlobalAveragePooling1D()(x)
return x
def DenseNet(input_shape, dense_layers, dense_blocks, growth_rate, reduction):
input_layer = Input(shape=input_shape)
x = Conv1D(64, kernel_size=3, padding='same', activation='relu')(input_layer)
for i in range(dense_blocks):
x = dense_block(x, dense_layers, growth_rate)
if i < dense_blocks - 1:
x = transition_block(x, reduction)
output_layer = Dense(1, activation='sigmoid')(x)
model = Model(inputs=input_layer, outputs=output_layer)
return model
model = DenseNet(input_shape=(100,1), dense_layers=8, dense_blocks=4, growth_rate=12, reduction=0.5)
opt = Adam(lr=0.001, clipvalue=1.0)
model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
print(model.summary())
plot_model(model, to_file='DenseNet.png', show_shapes=True)
```
上述代码中,dense_block函数定义了一个稠密块,其中包含了Batch Normalization、Conv1D和Dropout层,用于增加网络的深度和宽度。transition_block函数则定义了一个过渡块,用于减小特征图的深度和宽度。最后,DenseNet函数整合了所有块,构建了一个完整的一维DenseNet网络模型。在编译模型时,Adam优化器中设置了梯度裁剪clipvalue参数,用于防止梯度爆炸。
阅读全文