使用torch.mean和torch.var计算[256,1]的非负张量的协方差矩阵
时间: 2024-02-27 10:56:34 浏览: 116
浅谈pytorch中torch.max和F.softmax函数的维度解释
5星 · 资源好评率100%
可以使用如下代码计算[256,1]的张量的协方差矩阵:
```python
import torch
# 构造非负张量
x = torch.abs(torch.randn(256, 1))
# 计算均值和方差
mean = torch.mean(x, dim=1, keepdim=True)
var = torch.var(x, dim=1, keepdim=True)
# 中心化
x_centered = x - mean
# 计算协方差矩阵
cov = torch.matmul(x_centered, x_centered.t()) / (x.shape[1] - 1)
print(cov)
```
注意,在计算协方差矩阵之前需要将张量进行中心化。此外,由于这是一个列向量的协方差矩阵,因此在计算均值和方差时需要将维度指定为1,并保持张量的列向量形状。最后的协方差矩阵是一个256x256的矩阵。
阅读全文