CRNN如何用代码实现
时间: 2023-09-15 10:18:01 浏览: 205
CRNN完整源码实现--用PyTorch攻陷文字识别
5星 · 资源好评率100%
CRNN是一种深度学习模型,结合了卷积神经网络(CNN)和循环神经网络(RNN),用于处理序列数据,如图像、音频等。以下是用Python和PyTorch实现CRNN的代码示例:
首先需要导入所需的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
接下来定义CRNN模型类:
```python
class CRNN(nn.Module):
def __init__(self, num_classes):
super(CRNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.pool1 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv3 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv4 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.pool3 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 1), padding=(0, 1))
self.conv5 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.bn5 = nn.BatchNorm2d(num_features=512)
self.conv6 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.bn6 = nn.BatchNorm2d(num_features=512)
self.pool4 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 1), padding=(0, 1))
self.conv7 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(2, 2), stride=(1, 1), padding=(0, 0))
self.rnn = nn.GRU(input_size=512, hidden_size=256, num_layers=2, batch_first=True, bidirectional=True)
self.fc = nn.Linear(in_features=512, out_features=num_classes)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool2(x)
x = self.conv3(x)
x = F.relu(x)
x = self.conv4(x)
x = F.relu(x)
x = self.pool3(x)
x = self.conv5(x)
x = self.bn5(x)
x = F.relu(x)
x = self.conv6(x)
x = self.bn6(x)
x = F.relu(x)
x = self.pool4(x)
x = x.permute(0, 3, 1, 2)
x = self.conv7(x)
x = x.squeeze(2)
x = x.permute(0, 2, 1)
x, _ = self.rnn(x)
x = self.fc(x)
return x
```
在该模型中,包含了7个卷积层、4个池化层、2个Batch Normalization层、1个双向GRU层和1个全连接层。在模型的forward方法中,按照CRNN的架构搭建了神经网络。
接下来,我们可以实例化该CRNN模型并进行训练和测试:
```python
# 实例化模型
num_classes = 10
model = CRNN(num_classes)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 测试模型
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Accuracy: {}%'.format(accuracy))
```
这里使用了CrossEntropyLoss作为损失函数,Adam作为优化器,以及在训练过程中使用了一个简单的循环。在测试过程中,计算了模型的准确率。
阅读全文