将下列r代码进行修改,使best_copula函数应用于16支股票对数收益率数据 选择最合适的Copula模型 best_copula <- function(data1, data2) { normal_copula <- normalCopula(param = 0.5, dim = 2) t_copula <- tCopula(param = 0.5, dim = 2, df = 4) gumbel_copula <- gumbelCopula(param = 2, dim = 2) ## family "clayton", "frank", "amh", "gumbel", and "joe" archm_copula <- archmCopula("clayton", param = 2, dim = 2) copulas <- list(normal_copula, t_copula, gumbel_copula, archm_copula) copula_names <- c("Normal", "t", "Gumbel", "archm_copula") aic_values <- numeric(length(copulas)) data1 <- cbind(pstd(ibm, est.ibm[1], est.ibm[2], est.ibm[3]), pstd(sp500, est.sp500[1], est.sp500[2], est.sp500[3])) n = nrow(netRtns) ; n data2 = cbind(rank(ibm)/(n+1), rank(sp500)/(n+1)) for(i in 1:length(copulas)) { fit <- fitCopula(copulas[[i]], cbind(data1, data2), method = "mpl") aic_values[i] <- AIC(fit) } min_aic_index <- which.min(aic_values) best_copula <- copulas[[min_aic_index]] print(paste("Best copula is", copula_names[min_aic_index])) return(best_copula) } # 处理数据 n <- nrow(returns) rank_data <- apply(returns, 2, rank)/(n+1) stock_data_std <- apply(returns, 2, function(x) pobs(x)) rank_data_std <- apply(rank_data, 2, function(x) pobs(x)) # 拟合Copula模型 best_copula_stock <- best_copula(cbind(rank_data_std, stock_data_std))
时间: 2024-03-07 17:49:50 浏览: 113
tcopula函数的代码
4星 · 用户满意度95%
以下是修改后的代码:
```R
# 处理数据
returns <- read.csv("stock_returns.csv")
returns <- returns[, -1] # 去掉第一列
n <- nrow(returns)
rank_data <- apply(log(1 + returns), 2, rank)/(n+1) # 计算对数收益率的排名
stock_data_std <- apply(log(1 + returns), 2, function(x) pobs(x)) # 将对数收益率转化为标准正态分布
rank_data_std <- apply(rank_data, 2, function(x) pobs(x)) # 将排名转化为标准正态分布
# 拟合Copula模型
best_copula_stock <- function(data1, data2) {
normal_copula <- normalCopula(param = 0.5, dim = 2)
t_copula <- tCopula(param = 0.5, dim = 2, df = 4)
gumbel_copula <- gumbelCopula(param = 2, dim = 2)
archm_copula <- archmCopula("clayton", param = 2, dim = 2)
copulas <- list(normal_copula, t_copula, gumbel_copula, archm_copula)
copula_names <- c("Normal", "t", "Gumbel", "archm_copula")
aic_values <- numeric(length(copulas))
for(i in 1:length(copulas)) {
fit <- fitCopula(copulas[[i]], cbind(data1, data2), method = "mpl")
aic_values[i] <- AIC(fit)
}
min_aic_index <- which.min(aic_values)
best_copula <- copulas[[min_aic_index]]
print(paste("Best copula is", copula_names[min_aic_index]))
return(best_copula)
}
best_copula_stock(rank_data_std, stock_data_std)
```
这里将数据读入并处理成对数收益率的排名和标准正态分布形式。在`best_copula_stock`函数中,将数据1和数据2合并成一个矩阵,并使用最大似然估计法拟合四种Copula模型(normal、t、gumbel和archm_copula),并计算AIC值。最后选择AIC值最小的Copula模型并返回。最后调用`best_copula_stock`函数并传入排名和标准正态分布数据作为参数,即可得到最合适的Copula模型。
阅读全文