python根据邻接矩阵求度分布

时间: 2023-10-18 21:23:53 浏览: 45
假设邻接矩阵为 $adj$,其中 $adj[i][j]=1$ 表示 $i$ 和 $j$ 之间有一条边,否则为 $0$。我们可以按照如下方式求解度分布: ```python def degree_distribution(adj): n = len(adj) degrees = [0] * n for i in range(n): for j in range(n): if adj[i][j] == 1: degrees[i] += 1 distribution = [0] * (max(degrees) + 1) for d in degrees: distribution[d] += 1 return distribution ``` 其中,我们首先遍历邻接矩阵中的每一个元素,统计每个节点的度数。然后,我们再遍历统计得到的度数列表,计算每个度数在图中出现的次数,最终得到度分布。 注意,这里我们假设节点的编号从 $0$ 开始,因此度数列表的长度为最大度数 $+1$。如果节点编号从 $1$ 开始,需要对代码进行相应修改。
相关问题

用python计算邻接矩阵的度矩阵

好的,您可以使用以下代码实现: ```python import numpy as np # 构造邻接矩阵 adj_matrix = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]) # 计算度矩阵 degree_matrix = np.diag(np.sum(adj_matrix, axis=1)) print(degree_matrix) ``` 以上代码中,我们首先构造一个3x3的邻接矩阵,然后通过`np.sum()`函数计算每个节点的度,并使用`np.diag()`函数将度值填充到对角阵中,最终输出度矩阵。您可以将邻接矩阵替换为自己的数据,然后使用相同的代码计算度矩阵。

python根据邻接矩阵创建有向无权图

要根据邻接矩阵创建有向无权图,首先需要明确图的基本概念。有向图是由顶点集和边集构成的,而邻接矩阵则是通过一个二维矩阵表示了图中各个顶点之间是否存在边的信息。 对于给定的邻接矩阵,我们可以通过遍历矩阵中的每一个元素来创建相应的有向无权图。具体的步骤如下: 1. 创建一个空的有向无权图,使用字典来表示图中的顶点和边。每一个顶点对应一个键值对,键为顶点的名称,值为一个空列表,用来存储以该顶点为起点的边。 2. 遍历邻接矩阵的每一个元素,如果矩阵中的值为1,表示起点顶点到终点顶点存在一条有向边。 3. 根据矩阵的行和列的下标,找到对应的顶点名称,将终点顶点添加到起点顶点对应的边列表中。 4. 重复步骤2和3,直到遍历完整个邻接矩阵。 5. 返回创建好的有向无权图。 以一个简单的邻接矩阵为例,假设矩阵如下所示: [[0, 1, 0], [0, 0, 1], [1, 0, 0]] 根据上述步骤,将矩阵转化为有向无权图,可以得到如下结果: { "A": ["B"], "B": ["C"], "C": ["A"] } 其中,顶点的名称分别为A、B、C,A到B存在有向边,B到C存在有向边,C到A存在有向边。 这样就实现了通过给定的邻接矩阵创建有向无权图的过程。

相关推荐

最新推荐

recommend-type

Python根据已知邻接矩阵绘制无向图操作示例

主要介绍了Python根据已知邻接矩阵绘制无向图操作,涉及Python使用networkx、matplotlib进行数值运算与图形绘制相关操作技巧,需要的朋友可以参考下
recommend-type

【车牌识别】 GUI BP神经网络车牌识别(带语音播报)【含Matlab源码 668期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信