拉普拉斯特征映射代码
时间: 2023-07-10 11:15:45 浏览: 122
以下是拉普拉斯特征映射的 Python 代码实现:
```python
import numpy as np
from sklearn.preprocessing import normalize
from sklearn.neighbors import NearestNeighbors
from scipy.sparse.linalg import eigsh
def laplacian_eigenmaps(X, n_components, k=5, gamma=0.1):
"""
Laplacian Eigenmaps algorithm for dimensionality reduction.
Parameters:
-----------
X: numpy array or sparse matrix, shape (n_samples, n_features)
The input data to reduce dimensionality.
n_components: int
The number of components to keep.
k: int, optional (default=5)
Number of neighbors to use when constructing the adjacency matrix.
gamma: float, optional (default=0.1)
Parameter controlling the strength of the affinity matrix.
Returns:
--------
Y: numpy array, shape (n_samples, n_components)
The reduced data.
"""
# Compute pairwise euclidean distances
nn = NearestNeighbors(n_neighbors=k+1)
nn.fit(X)
distances, indices = nn.kneighbors(X)
W = np.exp(-gamma * distances**2)
np.fill_diagonal(W, 0)
# Compute the degree matrix
D = np.diag(np.sum(W, axis=1))
# Compute the unnormalized Laplacian
L = D - W
# Compute the normalized Laplacian
D_inv_sqrt = np.diag(1 / np.sqrt(np.sum(W, axis=1)))
L_norm = D_inv_sqrt @ L @ D_inv_sqrt
# Compute the eigenvectors and eigenvalues of L_norm
eigenvalues, eigenvectors = eigsh(L_norm, k=n_components+1, which='SM')
# Sort the eigenvectors by eigenvalues
idx = eigenvalues.argsort()
eigenvectors = eigenvectors[:, idx]
# Remove the first eigenvector (eigenvalue=0)
eigenvectors = eigenvectors[:, 1:n_components+1]
# Normalize the eigenvectors
Y = normalize(eigenvectors, norm='l2', axis=1)
return Y
```
这个实现使用了 Scikit-Learn 的 `NearestNeighbors` 类来计算邻居之间的距离,使用了 SciPy 的 `eigsh` 函数来计算特征向量和特征值,并使用 Scikit-Learn 的 `normalize` 函数对特征向量进行归一化。
阅读全文