branch3x3 = conv2d_bn(x, 192, 1, 1) branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding='valid') branch7x7x3 = conv2d_bn(x, 192, 1, 1) branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7) branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1) branch7x7x3 = conv2d_bn( branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid') branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x) x = layers.concatenate( [branch3x3, branch7x7x3, branch_pool], axis=3, name='mixed8')解释

时间: 2023-09-25 20:10:14 浏览: 134
这段代码是一个 Inception 模块中的一部分,该模块是 Google Inception 网络的一部分,用于图像分类任务。该模块包括三个分支,每个分支采用不同大小的卷积核进行卷积操作,然后将三个分支的输出在深度维度上拼接在一起。具体来说,第一个分支使用 1x1 的卷积核对输入进行卷积操作,输出通道数为 192,然后再使用 3x3 的卷积核对其进行卷积操作,输出通道数为 320,步长为 2,采用有效填充方式。第二个分支也使用 1x1 的卷积核对输入进行卷积操作,输出通道数为 192,然后再使用 1x7 的卷积核和 7x1 的卷积核对其进行卷积操作,输出通道数仍为 192,最后再使用 3x3 的卷积核对其进行卷积操作,步长为 2,采用有效填充方式。第三个分支使用最大池化层对输入进行池化操作,池化窗口大小为 3x3,步长为 2。最后,将三个分支的输出在深度维度上拼接在一起,作为 Inception 模块的输出。
相关问题

解释 branch1x1 = conv2d_bn(x, 64, 1, 1) branch5x5 = conv2d_bn(x, 48, 1, 1) branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 32, 1, 1) # 64+64+96+32 = 256 x = layers.concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=3, name='mixed0')

这段代码是在构建一个Inception module,也就是Google Inception V1网络中使用的模块。该模块主要由四个分支构成,每个分支都有不同的卷积核大小和数量,最终将四个分支的输出在通道维度上进行拼接。 具体来说,第一个分支是一个1x1的卷积层,输出通道数为64。第二个分支也是一个1x1的卷积层,输出通道数为48,然后接一个5x5的卷积层,输出通道数为64。第三个分支是一个1x1的卷积层,输出通道数为64,然后接一个3x3的卷积层,输出通道数为96,最后再接一个3x3的卷积层,输出通道数为96。第四个分支是一个3x3的平均池化层,步长为1,填充方式为same,输出通道数为32,然后再接一个1x1的卷积层。 最后,将四个分支的输出在通道维度上进行拼接,形成一个维度为256的输出。

for i in range(2): branch1x1 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(x, 160, 1, 1) branch7x7 = conv2d_bn(branch7x7, 160, 1, 7) branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = conv2d_bn(x, 160, 1, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = AveragePooling2D( (3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=3, name='mixed' + str(5 + i))解释

这段代码是 Inception V3 网络中的一个 Inception 模块,用于提取图像特征。该模块分为四个分支,分别进行不同的卷积操作,然后将四个分支的结果在通道维度上进行拼接。其中,分支1使用 1x1 的卷积核,分支2和分支3分别使用 1x1 和 7x1 或 1x7 的卷积核,最后再使用 1x1 的卷积核;分支4使用 3x3 的平均池化操作,然后使用 1x1 的卷积核。这个模块旨在提取图像的多尺度特征。
阅读全文

相关推荐

class ASPP(nn.Module) def init(self, dim_in, dim_out, rate=1, bn_mom=0.1) super(ASPP, self).init() self.branch1 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=4 rate, dilation=4 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch3 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=8 rate, dilation=8 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch4 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=12 rate, dilation=12 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch5 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=16 rate, dilation=16 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch6 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=20 rate, dilation=20 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True) ) self.branch7 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=24 rate, dilation=24 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True) ) self.branch8_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True) self.branch8_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom) self.branch8_relu = nn.ReLU(inplace=True) self.conv_cat = nn.Sequential( nn.Conv2d(dim_out 8, dim_out, 1, 1, padding=0, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) def forward(self, x) [b, c, row, col] = x.size() conv1x1 = self.branch1(x) conv3x3_1 = self.branch2(x) conv3x3_2 = self.branch3(x) conv3x3_3 = self.branch4(x) conv3x3_4 = self.branch5(x) conv3x3_5 = self.branch6(x) conv3x3_6 = self.branch7(x) global_feature = torch.mean(x, 2, True) global_feature = torch.mean(global_feature, 3, True) global_feature = self.branch8_conv(global_feature) global_feature = self.branch8_bn(global_feature) global_feature = self.branch8_relu(global_feature) global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True) feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, conv3x3_4, conv3x3_5, conv3x3_6, global_feature], dim=1) result = self.conv_cat(feature_cat) return result用深度可分离卷积代替这段代码的3×3卷积

解释每一句class RepVggBlock(nn.Layer): def init(self, ch_in, ch_out, act='relu', alpha=False): super(RepVggBlock, self).init() self.ch_in = ch_in self.ch_out = ch_out self.conv1 = ConvBNLayer( ch_in, ch_out, 3, stride=1, padding=1, act=None) self.conv2 = ConvBNLayer( ch_in, ch_out, 1, stride=1, padding=0, act=None) self.act = get_act_fn(act) if act is None or isinstance(act, ( str, dict)) else act if alpha: self.alpha = self.create_parameter( shape=[1], attr=ParamAttr(initializer=Constant(value=1.)), dtype="float32") else: self.alpha = None def forward(self, x): if hasattr(self, 'conv'): y = self.conv(x) else: if self.alpha: y = self.conv1(x) + self.alpha * self.conv2(x) else: y = self.conv1(x) + self.conv2(x) y = self.act(y) return y def convert_to_deploy(self): if not hasattr(self, 'conv'): self.conv = nn.Conv2D( in_channels=self.ch_in, out_channels=self.ch_out, kernel_size=3, stride=1, padding=1, groups=1) kernel, bias = self.get_equivalent_kernel_bias() self.conv.weight.set_value(kernel) self.conv.bias.set_value(bias) self.delattr('conv1') self.delattr('conv2') def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1) kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2) if self.alpha: return kernel3x3 + self.alpha * self._pad_1x1_to_3x3_tensor( kernel1x1), bias3x3 + self.alpha * bias1x1 else: return kernel3x3 + self._pad_1x1_to_3x3_tensor( kernel1x1), bias3x3 + bias1x1 def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return nn.functional.pad(kernel1x1, [1, 1, 1, 1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 kernel = branch.conv.weight running_mean = branch.bn._mean running_var = branch.bn._variance gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn._epsilon std = (running_var + eps).sqrt() t = (gamma / std).reshape((-1, 1, 1, 1)) return kernel * t, beta - running_mean * gamma / std

大家在看

recommend-type

Video-Streamer:RTSP视频客户端和服务器

视频流 通过RSP Video Streamer进行端到端的RTSP。 视频服务器 提供文件movie.Mjpeg并处理RTSP命令。 视频客户端 在客户端中使用播放/暂停/停止控件打开视频播放器,以提取视频并将RTSP请求发送到服务器。
recommend-type

短消息数据包协议

SMS PDU 描述了 短消息 数据包 协议 对通信敢兴趣的可以自己写这些程序,用AT命令来玩玩。
recommend-type

国自然标书医学下载国家自然科学基金面上课题申报中范文模板2023

国自然标书医学下载国家自然科学基金面上课题申报中范文模板2023(全部资料共57 GB+, 5870个文件) 10.第10部分2022国自然清单+结题报告(12月 更新)) 09·第九部分2022面上地区青年国自然申请书空白模板 08.第八部分 2021国自然空白模板及参考案例 07第七部分2022超全国自然申请申报及流程经 验 06·第六部分国家社科基金申请书范本 05.第五部分 独家最新资料内涵中标标 书全文2000 04.第四部分八大分部标书 00.2023年国自然更新
recommend-type

论文研究-一种面向HDFS中海量小文件的存取优化方法.pdf

为了解决HDFS(Hadoop distributed file system)在存储海量小文件时遇到的NameNode内存瓶颈等问题,提高HDFS处理海量小文件的效率,提出一种基于小文件合并与预取的存取优化方案。首先通过分析大量小文件历史访问日志,得到小文件之间的关联关系,然后根据文件相关性将相关联的小文件合并成大文件后再存储到HDFS。从HDFS中读取数据时,根据文件之间的相关性,对接下来用户最有可能访问的文件进行预取,减少了客户端对NameNode节点的访问次数,提高了文件命中率和处理速度。实验结果证明,该方法有效提升了Hadoop对小文件的存取效率,降低了NameNode节点的内存占用率。
recommend-type

批量标准矢量shp互转txt工具

1.解压运行exe即可。(适用于windows7、windows10等操作系统) 2.标准矢量shp,转换为标准txt格式 4.此工具专门针对自然资源系统:建设用地报批、设施农用地上图、卫片等系统。

最新推荐

recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

当使用`kernel_size`为3的卷积核时,对于输入张量`[batch_size, 6, 8]`,每个滤波器将生成一个长度为`(6 - 3 + 1 = 4)`的输出特征向量,因为卷积核覆盖了3个位置,且考虑到填充方式(默认为'valid'),因此输出长度...
recommend-type

Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

在TensorFlow库中,`tf.nn.atrous_conv2d`函数用于实现空洞卷积,这是一种特殊形式的卷积操作,能够扩大模型的感受野,同时避免池化带来的信息丢失。空洞卷积(也称为膨胀卷积或带孔卷积)通过在卷积核的元素之间...
recommend-type

对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

3. 内部实现:`tf.nn.conv1d`通过调用`tf.nn.conv2d`实现,`layers.conv1d`则包含了完整的层构建逻辑。 在实践中,如果你需要自定义复杂的网络结构或者对性能有极致要求,可能会选择`tf.nn.conv1d`。而在构建模型时...
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【OPC UA基础教程】:C#实现与汇川PLC通讯的必备指南

# 摘要 随着工业自动化和智能制造的发展,OPC UA (Open Platform Communications Unified Architecture) 协议已成为实现设备间安全通信的关键技术。本文首先概述了OPC UA协议的基础知识,随后介绍了C#语言的基础和开发环境的配置,特别是如何在C#中集成OPC UA客户端库。文章重点讨论了OPC UA在C#环境中的应用,包括实现客户端、进行数据读写操作以及订阅机制。此外,还详细探讨了如何在C#环境中实现与汇川PLC的通讯,并提供了解决异常和通讯中断情况下的策略。最后,文章分析了OPC UA在工业自动化中的高级应用,包括面对工业4.0挑战的优势