if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters)
时间: 2024-04-21 08:29:25 浏览: 275
node.js中process进程的概念和child_process子进程模块的使用方法示例
这段代码主要实现了分布式训练模式下的模型初始化和参数统计的功能。具体来说:
- `if args.distributed:` 判断是否使用分布式训练模式。
- `model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])` 在分布式训练模式下,使用 `DistributedDataParallel` 函数来初始化模型,该函数会自动将模型分布到多个 GPU 上进行训练,以提高训练速度。`device_ids` 参数指定了使用的 GPU 设备 ID。
- `model_without_ddp = model.module` 获取没有 `DistributedDataParallel` 封装的模型,以便之后进行保存或者使用。
- `n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)` 统计模型的参数个数,其中 `p.numel()` 表示计算张量 `p` 中元素的个数,`p.requires_grad` 表示张量 `p` 是否需要梯度更新。这里只统计需要梯度更新的参数个数。
- `print('number of params:', n_parameters)` 打印模型的参数个数。
阅读全文