乳腺癌病理图像分类代码
时间: 2023-10-10 14:12:00 浏览: 142
以下是一个使用卷积神经网络(CNN)对乳腺癌病理图像进行分类的示例代码。这个示例使用了PyTorch深度学习框架。
首先,需要导入必要的库和模块:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms
```
然后,我们需要定义一个CNN模型:
```
class BreastCancerClassifier(nn.Module):
def __init__(self):
super(BreastCancerClassifier, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(16)
self.relu1 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(32)
self.relu2 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.relu3 = nn.ReLU(inplace=True)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 28 * 28, 256)
self.relu4 = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(256, 2)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.pool3(x)
x = x.view(-1, 64 * 28 * 28)
x = self.fc1(x)
x = self.relu4(x)
x = self.fc2(x)
return x
```
接下来,我们需要定义一些超参数和数据加载器:
```
batch_size = 32
learning_rate = 0.001
num_epochs = 10
data_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
train_dataset = ImageFolder('path_to_train_data', transform=data_transforms)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = ImageFolder('path_to_test_data', transform=data_transforms)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
```
最后,我们可以开始训练模型:
```
model = BreastCancerClassifier()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item()))
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the test images: {} %'.format(100 * correct / total))
```
这个简单的示例可以帮助你入门乳腺癌病理图像分类的代码实现。当然,如果你想要更精确和稳定的结果,你需要更复杂的模型和更大的数据集。
阅读全文