PyTorch中实现卷积神经网络正则化,在训练集和验证集中都要添加Dropout
时间: 2023-12-10 16:37:09 浏览: 84
PyTorch上实现卷积神经网络CNN的方法
5星 · 资源好评率100%
在PyTorch中实现卷积神经网络的正则化通常使用Dropout技术,在训练集和验证集中都要添加。Dropout是一种常用的正则化技术,它可以随机地将一部分神经元的输出设置为0,从而防止过拟合。
在PyTorch中,可以通过在网络中添加`nn.Dropout()`层来实现Dropout。在训练阶段,该层会随机将一些神经元的输出置为0,从而起到正则化的作用。在测试阶段,`nn.Dropout()`层会将所有神经元的输出乘以Dropout概率,以保持输出的期望值不变。
在训练过程中,需要在每个batch前调用`model.train()`函数,以确保Dropout层在训练阶段起作用。在验证或测试过程中,需要在每个batch前调用`model.eval()`函数,以关闭Dropout层。
以下是一个使用Dropout技术进行正则化的卷积神经网络的示例代码:
```python
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.fc1 = nn.Linear(64 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 10)
self.dropout = nn.Dropout(0.5) # 添加Dropout层,Dropout概率为0.5
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.conv2(x))
x = nn.functional.max_pool2d(x, 2)
x = x.view(-1, 64 * 8 * 8)
x = self.dropout(x) # 在训练阶段启用Dropout
x = nn.functional.relu(self.fc1(x))
x = self.dropout(x) # 在训练阶段启用Dropout
x = self.fc2(x)
return x
```
在训练过程中,需要在每个batch前调用`net.train()`函数,例如:
```python
net = Net()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
criterion = nn.CrossEntropyLoss()
for epoch in range(num_epochs):
net.train() # 启用Dropout
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = net(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
net.eval() # 关闭Dropout
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = correct / total
print('Epoch {}, Test Accuracy: {:.2f}%'.format(epoch+1, accuracy*100))
```
阅读全文