用C语言和3.4.1opencv库,代码设计一个禁止右转道路交通标识标志识别系统,要求具有一定的鲁棒性
时间: 2024-03-23 17:41:04 浏览: 63
好的,以下是一个简单的禁止右转道路交通标识标志识别系统的实现过程,具有一定的鲁棒性:
1. 导入opencv库和其他必要的头文件,包括cv.h、highgui.h、imgproc.h等。
```c
#include <stdio.h>
#include <stdlib.h>
#include <opencv2/highgui/highgui_c.h>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
```
2. 定义分类器的特征向量和大小,以及训练样本的数量和路径。
```c
#define feature_size 99
int sample_num = 150;
char sample_path[] = "./samples/";
```
3. 定义一个函数,用于提取图像的LBP特征向量。
```c
void extract_lbp_feature(IplImage* img, float* feature_vector) {
int cell_size = 8;
int block_size = 2;
int lbp_size = 256;
int step_x = img->width / cell_size;
int step_y = img->height / cell_size;
int feature_idx = 0;
for (int i = 0; i < step_y - block_size + 1; i++) {
for (int j = 0; j < step_x - block_size + 1; j++) {
float block_feature[feature_size / 4] = { 0 };
for (int m = 0; m < block_size; m++) {
for (int n = 0; n < block_size; n++) {
int x = j * cell_size + n * cell_size;
int y = i * cell_size + m * cell_size;
int lbp_value = 0;
int center_value = CV_IMAGE_ELEM(img, uchar, y + cell_size / 2, x + cell_size / 2);
for (int k = 0; k < 8; k++) {
int neighbor_x = x + cell_size / 2 + cos(k * CV_PI / 4) * cell_size / 2;
int neighbor_y = y + cell_size / 2 - sin(k * CV_PI / 4) * cell_size / 2;
int neighbor_value = CV_IMAGE_ELEM(img, uchar, neighbor_y, neighbor_x);
lbp_value += (neighbor_value >= center_value) << k;
}
block_feature[lbp_value / 4]++;
}
}
for (int m = 0; m < feature_size / 4; m++) {
feature_vector[feature_idx++] = block_feature[m];
}
}
}
}
```
4. 定义一个函数,用于读取训练样本并提取LBP特征向量。
```c
void load_samples(float** samples, int* labels) {
CvMat* sample_mat = cvCreateMat(sample_num, feature_size, CV_32FC1);
CvMat* label_mat = cvCreateMat(sample_num, 1, CV_32FC1);
for (int i = 0; i < sample_num; i++) {
char file_path[100];
sprintf(file_path, "%s%d.jpg", sample_path, i + 1);
IplImage* img = cvLoadImage(file_path, CV_LOAD_IMAGE_GRAYSCALE);
float* feature_vector = (float*)malloc(feature_size * sizeof(float));
extract_lbp_feature(img, feature_vector);
samples[i] = feature_vector;
labels[i] = 1;
cvSet1D(label_mat, i, cvScalar(labels[i]));
for (int j = 0; j < feature_size; j++) {
cvmSet(sample_mat, i, j, samples[i][j]);
}
cvReleaseImage(&img);
}
CvSVM svm;
CvSVMParams params;
svm_type = CvSVM::C_SVC;
kernel_type = CvSVM::RBF;
params.svm_type = svm_type;
params.kernel_type = kernel_type;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);
svm.train(sample_mat, label_mat, NULL, NULL, params);
svm.save("svm.xml");
cvReleaseMat(&sample_mat);
cvReleaseMat(&label_mat);
}
```
5. 定义一个函数,用于读取图像并进行预处理,包括高斯模糊、二值化、腐蚀、膨胀等操作。
```c
void preprocess_image(IplImage* img, IplImage* processed_img) {
cvSmooth(img, processed_img, CV_GAUSSIAN, 3, 3);
cvThreshold(processed_img, processed_img, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
cvErode(processed_img, processed_img, NULL, 1);
cvDilate(processed_img, processed_img, NULL, 1);
}
```
6. 定义主函数,用于读取图像、进行预处理、提取特征、调用分类器进行识别,并输出结果。
```c
int main() {
float* samples[sample_num];
int labels[sample_num];
load_samples(samples, labels);
IplImage* img = cvLoadImage("test.jpg", CV_LOAD_IMAGE_GRAYSCALE);
IplImage* processed_img = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1);
preprocess_image(img, processed_img);
float feature_vector[feature_size];
extract_lbp_feature(processed_img, feature_vector);
CvMat* feature_mat = cvCreateMat(1, feature_size, CV_32FC1);
for (int i = 0; i < feature_size; i++) {
cvmSet(feature_mat, 0, i, feature_vector[i]);
}
CvSVM svm;
svm.load("svm.xml");
float result = svm.predict(feature_mat);
if (result == 1) {
printf("禁止右转道路交通标识标志\n");
} else {
printf("未识别出禁止右转道路交通标识标志\n");
}
cvReleaseImage(&img);
cvReleaseImage(&processed_img);
cvReleaseMat(&feature_mat);
return 0;
}
```
这只是一个简单的实现过程,具体的实现方法需要根据实际情况进行调整。
阅读全文