增加Seq2Seq模型机器翻译中的训练周期,测试模型并分析其运行结果
时间: 2024-03-08 20:46:49 浏览: 180
Seq2seq模型、机器翻译学习笔记
5星 · 资源好评率100%
增加Seq2Seq模型机器翻译的训练周期可以提高模型的准确性和泛化能力,但也可能会导致过拟合。下面是一个基于TensorFlow 2.0的Seq2Seq机器翻译模型训练和测试的示例代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, LSTM, Dense
from tensorflow.keras.models import Model
import numpy as np
# 定义hyperparameters
batch_size = 64
epochs = 100
latent_dim = 256
num_samples = 10000
# 加载数据
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
with open('fra-eng/fra.txt', 'r', encoding='utf-8') as f:
lines = f.read().split('\n')
for line in lines[: min(num_samples, len(lines) - 1)]:
input_text, target_text, _ = line.split('\t')
target_text = '\t' + target_text + '\n'
input_texts.append(input_text)
target_texts.append(target_text)
for char in input_text:
if char not in input_characters:
input_characters.add(char)
for char in target_text:
if char not in target_characters:
target_characters.add(char)
# 建立字符索引
input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])
# 构建encoder和decoder模型
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]
decoder_inputs = Input(shape=(None, num_decoder_tokens))
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# 编译模型
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
# 准备训练数据
encoder_input_data = np.zeros((len(input_texts), None, num_encoder_tokens), dtype='float32')
decoder_input_data = np.zeros((len(input_texts), None, num_decoder_tokens), dtype='float32')
decoder_target_data = np.zeros((len(input_texts), None, num_decoder_tokens), dtype='float32')
for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
for t, char in enumerate(input_text):
encoder_input_data[i, t, input_token_index[char]] = 1.
for t, char in enumerate(target_text):
decoder_input_data[i, t, target_token_index[char]] = 1.
if t > 0:
decoder_target_data[i, t - 1, target_token_index[char]] = 1.
# 训练模型
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
batch_size=batch_size,
epochs=epochs,
validation_split=0.2)
# 预测并输出结果
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)
def decode_sequence(input_seq):
states_value = encoder_model.predict(input_seq)
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, target_token_index['\t']] = 1.
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict(
[target_seq] + states_value)
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
if (sampled_char == '\n' or
len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.
states_value = [h, c]
return decoded_sentence
for seq_index in range(10):
input_seq = encoder_input_data[seq_index: seq_index + 1]
decoded_sentence = decode_sequence(input_seq)
print('-')
print('Input sentence:', input_texts[seq_index])
print('Decoded sentence:', decoded_sentence)
```
在这个示例代码中,我们可以通过调整`epochs`的值来增加模型的训练周期。训练完成后,我们可以使用`decode_sequence`函数对新的输入序列进行翻译,并输出翻译结果。我们可以通过人工评估模型输出的翻译结果来判断模型的准确性和泛化能力是否有所提高。
阅读全文