yolov5里的autoanchor.py怎么改为K-means++
时间: 2024-04-29 15:21:39 浏览: 211
在YOLOv5中使用K-means++替代autoanchor.py的步骤如下:
1. 安装依赖:sklearn
```
pip install sklearn
```
2. 在train.py中导入sklearn.cluster.KMeans:
```python
from sklearn.cluster import KMeans
```
3. 将autoanchor.py中的代码替换为以下代码:
```python
def kmean_anchors(dataset, num_anchors, img_size, thr=4.0):
from tqdm.auto import tqdm
from itertools import product as product
shapes = []
for i in tqdm(range(len(dataset)), desc='Collecting shapes'):
_, _, height, width = dataset[i]
shapes.append([width, height])
shapes = np.array(shapes)
# K-means聚类
kmeans = KMeans(n_clusters=num_anchors, n_init=20, max_iter=1000)
kmeans.fit(shapes)
# 打印聚类结果
print('Anchor Sizes:')
anchors = kmeans.cluster_centers_
for i, anchor in enumerate(anchors):
print(f'{i+1}: {anchor[0]:.0f}x{anchor[1]:.0f}')
# 根据最大边长进行排序
sorted_indices = np.argsort(anchors.max(axis=1))[::-1]
sorted_anchors = anchors[sorted_indices]
# 进行尺寸调整以适应图像大小
w, h = img_size
scaled_anchors = np.multiply(sorted_anchors, np.array([w, h])) / thr
return scaled_anchors
```
4. 在train.py中调用kmean_anchors函数:
```python
anchors = kmean_anchors(dataset, num_anchors, img_size)
```
这样就可以使用K-means++替代autoanchor.py了。
阅读全文
相关推荐
















