yolov5里的K-means代码改为K-means++
时间: 2023-11-01 18:55:30 浏览: 136
Yolov5中的K-means代码实现了经典的K-means聚类算法,如果要改为K-means++,可以按照以下步骤进行修改:
1. 修改kmeans.py文件中的kmeans函数,将初始化质心的方式改为K-means++算法。具体来说,可以参考以下代码:
```python
def kmeans_plus_plus(X, n_clusters, random_state=0):
rng = np.random.RandomState(random_state)
n_samples = X.shape[0]
centers = [X[rng.randint(n_samples)]]
distances = np.zeros(n_samples)
for i in range(1, n_clusters):
for j in range(n_samples):
distances[j] = np.min([np.linalg.norm(X[j] - c) for c in centers])
probs = distances / np.sum(distances)
cumprobs = np.cumsum(probs)
r = rng.rand()
for j, cp in enumerate(cumprobs):
if cp > r:
break
centers.append(X[j])
return centers
def kmeans(X, n_clusters, random_state=0):
centers = kmeans_plus_plus(X, n_clusters, random_state)
labels = np.zeros(X.shape[0])
while True:
old_centers = np.copy(centers)
for i in range(X.shape[0]):
distances = np.linalg.norm(X[i] - centers, axis=1)
labels[i] = np.argmin(distances)
for j in range(n_clusters):
centers[j] = np.mean(X[labels == j], axis=0)
if np.allclose(old_centers, centers):
break
return labels
```
2. 在train.py文件中,找到以下代码行:
```python
anchors = kmeans(wh, num_anchors, random_state=0)
```
将其修改为以下代码:
```python
anchors = kmeans_plus_plus(wh, num_anchors, random_state=0)
```
这样就可以将Yolov5中的K-means聚类算法改为K-means++算法。
阅读全文