自定义函数替换卷积神经网络reluLayer的matlab代码
时间: 2023-10-22 14:14:16 浏览: 150
以下是一个示例的自定义函数,用于替换matlab中的reluLayer:
```matlab
function layer = customReluLayer(name)
% 自定义ReLU层
% 输入参数:
% name:层的名称
layer = nnet.layer.ReLULayer('Name', name);
layer.Description = 'Custom ReLU layer';
layer.InputNames = {'input'};
layer.OutputNames = {'output'};
layer.ForwardFunction = @reluForward;
layer.BackwardFunction = @reluBackward;
end
function Z = reluForward(X)
% 前向传播函数
% 输入参数:
% X:输入张量
% 输出参数:
% Z:输出张量
Z = max(0,X);
end
function [dX,dW] = reluBackward(X,~,dZ,~)
% 反向传播函数
% 输入参数:
% X:输入张量
% dZ:输出梯度张量
% 输出参数:
% dX:输入梯度张量
% dW:权重梯度张量
dX = dZ .* (X > 0);
dW = [];
end
```
使用此自定义函数可以像使用matlab自带的reluLayer一样使用:
```matlab
% 创建网络
lgraph = layerGraph();
lgraph = addLayers(lgraph, imageInputLayer([28 28 1],'Name','input'));
lgraph = addLayers(lgraph, customReluLayer('relu'));
lgraph = addLayers(lgraph, fullyConnectedLayer(10,'Name','fc'));
lgraph = addLayers(lgraph, softmaxLayer('Name','softmax'));
lgraph = addLayers(lgraph, classificationLayer('Name','output'));
lgraph = connectLayers(lgraph, 'input', 'relu');
lgraph = connectLayers(lgraph, 'relu', 'fc');
lgraph = connectLayers(lgraph, 'fc', 'softmax');
lgraph = connectLayers(lgraph, 'softmax', 'output');
% 训练网络
options = trainingOptions('sgdm');
net = trainNetwork(trainImages,trainLabels,lgraph,options);
% 测试网络
predLabels = classify(net, testImages);
accuracy = sum(predLabels == testLabels)/numel(testLabels);
fprintf('测试集准确率:%f\n', accuracy);
```
阅读全文