用matlab编写完整turbo编码
时间: 2023-06-28 10:10:06 浏览: 126
以下是一个基本的 MATLAB 实现 Turbo 编码的示例:
```
% 初始化参数
N = 1000; % 数据序列长度
K = 500; % 信息位长度
R = K / N; % 编码速率
numIter = 4; % 迭代次数
EsNo = 5; % 信噪比
noiseVar = 10^(-EsNo/10); % 噪声方差
numStates = 2^(K-1); % 状态数
numTransitions = 3*K; % 转移数
% 生成随机序列
data = randi([0 1], K, 1);
% 生成码字
encData = turbo_encoding(data);
% 添加高斯白噪声
noise = sqrt(noiseVar) * randn(size(encData));
rxData = encData + noise;
% 迭代译码
decodedData = turbo_decoding(rxData, numIter);
% 计算误比特率
ber = sum(xor(data, decodedData)) / K;
% 显示结果
fprintf('编码速率: %.2f\n', R);
fprintf('误比特率: %.2e\n', ber);
function encData = turbo_encoding(data)
% 初始化编码器
trellis = poly2trellis(4, [13 15], 13);
interleaver = randperm(length(data));
state = 0;
nextStates = zeros(numStates, 2);
outputs = zeros(numStates, 2);
for i = 1:numStates
[nextStates(i,:), outputs(i,:)] = ...
convenc(dec2binvec(i-1, K-1), trellis);
end
% 编码
c1 = zeros(K, 1);
c2 = zeros(K, 1);
for i = 1:N
% 输入数据
if i <= K
c1(i) = data(i);
else
c1(i) = xor(c2(i-1), data(i));
end
% 第一条分支
nextState1 = nextStates(state*2+1,:);
output1 = outputs(state*2+1,:);
for j = 1:2
c1p(j) = xor(c1(i), output1(j));
c2p(j) = xor(c2(i-1), output1(j));
end
[maxMetric1, idx1] = max(abs(c1p + c2p));
c1(i) = c1p(idx1);
c2(i) = c2p(idx1);
state = nextState1(idx1);
% 第二条分支
nextState2 = nextStates(state*2+2,:);
output2 = outputs(state*2+2,:);
for j = 1:2
c1p(j) = xor(c1(i), output2(j));
c2p(j) = xor(c2(i-1), output2(j));
end
[maxMetric2, idx2] = max(abs(c1p + c2p));
c1(i) = c1p(idx2);
c2(i) = c2p(idx2);
state = nextState2(idx2);
% 交织
c1(i) = c1(interleaver(i));
c2(i) = c2(interleaver(i));
end
% 输出码字
encData = [data; c1; c2];
end
function decodedData = turbo_decoding(rxData, numIter)
% 初始化译码器
trellis = poly2trellis(4, [13 15], 13);
interleaver = randperm(length(rxData));
state = 0;
nextStates = zeros(numStates, 2);
outputs = zeros(numStates, 2);
for i = 1:numStates
[nextStates(i,:), outputs(i,:)] = ...
convenc(dec2binvec(i-1, K-1), trellis);
end
Lc = 2*rxData / noiseVar;
Lc(isnan(Lc)) = 0;
% 迭代译码
L1 = zeros(K, numIter);
L2 = zeros(K, numIter);
for iter = 1:numIter
% 第一次译码
[L1(:,iter), L2(:,iter), state] = ...
turbo_decode_iteration(Lc, interleaver, state, ...
nextStates, outputs, numTransitions);
% 反交织
L1(:,iter) = L1(interleaver,iter);
L2(:,iter) = L2(interleaver,iter);
% 第二次译码
[L2(:,iter), L1(:,iter), state] = ...
turbo_decode_iteration(L2(:,iter), interleaver, state, ...
nextStates, outputs, numTransitions);
% 反交织
L1(:,iter) = L1(interleaver,iter);
L2(:,iter) = L2(interleaver,iter);
end
% 计算后验概率
L = L1 + L2;
p0 = exp(L) ./ (1 + exp(L));
p1 = 1 ./ (1 + exp(L));
% 译码
decodedData = (p1 > 0.5);
end
function [L1p, L2p, statep] = turbo_decode_iteration(Lc, interleaver, ...
state, nextStates, outputs, numTransitions)
% 初始化
L1p = -inf(K, 1);
L2p = -inf(K, 1);
statep = zeros(K, 1);
alpha = zeros(numStates, 1);
beta = zeros(numStates, 1);
gamma = zeros(numStates, 2);
% 正交路径译码
for i = 1:N
% 输入数据
if i <= K
L1p(i) = Lc(i);
L2p(i) = Lc(i);
else
L1p(i) = Lc(i) + L2p(i-1);
L2p(i) = Lc(i) + L1p(i-1);
end
% 第一条分支
nextState1 = nextStates(state*2+1,:);
output1 = outputs(state*2+1,:);
for j = 1:2
alpha(nextState1(j)+1) = ...
max(alpha(nextState1(j)+1), L1p(i) + log(output1(j)));
gamma(nextState1(j)+1, j) = ...
gamma(nextState1(j)+1, j) + beta(state+1) + ...
L1p(i) + log(output1(j)) - alpha(nextState1(j)+1);
end
% 第二条分支
nextState2 = nextStates(state*2+2,:);
output2 = outputs(state*2+2,:);
for j = 1:2
beta(nextState2(j)+1) = ...
max(beta(nextState2(j)+1), L2p(i) + log(output2(j)));
gamma(nextState2(j)+1, j) = ...
gamma(nextState2(j)+1, j) + alpha(state+1) + ...
L2p(i) + log(output2(j)) - beta(nextState2(j)+1);
end
% 更新状态
[maxMetric, idx] = max(gamma(:));
[statep(i), inputIdx] = ind2sub(size(gamma), idx);
statep(i) = statep(i) - 1;
L1p(i) = alpha(statep(i)+1) + beta(statep(i)+1) - ...
L1p(i) - log(output1(inputIdx)) + log(1 + exp(maxMetric));
L2p(i) = alpha(statep(i)+1) + beta(statep(i)+1) - ...
L2p(i) - log(output2(inputIdx)) + log(1 + exp(maxMetric));
% 重置变量
alpha(:) = -inf;
beta(:) = -inf;
gamma(:) = 0;
state = statep(i);
end
end
```
该实现使用了一个标准的 Turbo 编码器和译码器,其中编码器使用了一个 4 阶、多项式为 [13 15] 的递归卷积码,并且采用了一个随机的交织器。译码器使用了一个正交路径译码算法和一个迭代译码算法,迭代次数为 4 次。该实现输出编码速率和误比特率,并且可以通过调整参数来改变编码速率和信噪比。
阅读全文