import pandas as pd from sklearn.cluster import DBSCAN import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler # 选择需要聚类的三列数据并转换为numpy数据 data = df[['discounted_price','discount_percentage','rating_count']].values # 创建一个MinMaxScaler对象 scaler = MinMaxScaler() # 对DataFrame进行特征缩放 data = scaler.fit_transform(data) # 找出所有特征值不在范围内的行 outliers = df.loc[(data<0)|(data>0.6)].dropna(how='all').index # 删除这些行 df = df.drop(outliers) # 选择需要聚类的三列数据 data = df[['discounted_price','discount_percentage','rating_count']].values # 创建一个MinMaxScaler对象 scaler = MinMaxScaler() # 对data进行特征缩放 data = scaler.fit_transform(data) ## 构建DBSCAN聚类模型 dbscan = DBSCAN(eps=0.1, min_samples=3) dbscan.fit(data) # 获取聚类结果 labels = dbscan.labels_ ## 可视化聚类结果 fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(data[:,0], data[:,1], data[:,2], c=labels) ax.set_xlim([0,0.6]) ax.set_ylim([0,0.6]) ax.set_zlim([0,0.6]) # 添加x轴和y轴标签 ax.set_xlabel('discounted_price') ax.set_ylabel('discount_percentage') ax.set_zlabel('rating_count') plt.show()怎样能让他实现在窗口交互旋转

时间: 2024-01-14 13:04:08 浏览: 21
你可以使用`mpl_toolkits.mplot3d`提供的`Axes3D`来创建一个3D坐标轴对象,并在创建坐标轴对象时设置`proj_type='interactive'`参数,来实现在窗口交互旋转的效果。具体代码如下: ```python import pandas as pd from sklearn.cluster import DBSCAN import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from mpl_toolkits.mplot3d import Axes3D # 导入3D坐标轴对象 # 选择需要聚类的三列数据并转换为numpy数据 data = df[['discounted_price','discount_percentage','rating_count']].values # 创建一个MinMaxScaler对象 scaler = MinMaxScaler() # 对DataFrame进行特征缩放 data = scaler.fit_transform(data) # 找出所有特征值不在范围内的行 outliers = df.loc[(data<0)|(data>0.6)].dropna(how='all').index # 删除这些行 df = df.drop(outliers) # 选择需要聚类的三列数据 data = df[['discounted_price','discount_percentage','rating_count']].values # 创建一个MinMaxScaler对象 scaler = MinMaxScaler() # 对data进行特征缩放 data = scaler.fit_transform(data) ## 构建DBSCAN聚类模型 dbscan = DBSCAN(eps=0.1, min_samples=3) dbscan.fit(data) # 获取聚类结果 labels = dbscan.labels_ ## 可视化聚类结果 fig = plt.figure() # 创建3D坐标轴对象,并设置proj_type参数为'interactive' ax = fig.add_subplot(111, projection='3d', proj_type='interactive') ax.scatter(data[:,0], data[:,1], data[:,2], c=labels) ax.set_xlim([0,0.6]) ax.set_ylim([0,0.6]) ax.set_zlim([0,0.6]) # 添加x轴和y轴标签 ax.set_xlabel('discounted_price') ax.set_ylabel('discount_percentage') ax.set_zlabel('rating_count') plt.show() ``` 这样,你就可以在运行代码后通过鼠标在窗口中拖拽来旋转3D坐标轴了。

相关推荐

最新推荐

recommend-type

微信小程序-番茄时钟源码

微信小程序番茄时钟的源码,支持进一步的修改。番茄钟,指的是把工作任务分解成半小时左右,集中精力工作25分钟后休息5分钟,如此视作种一个“番茄”,而“番茄工作法”的流程能使下一个30分钟更有动力。
recommend-type

激光雷达专题研究:迈向高阶智能化关键,前瞻布局把握行业脉搏.pdf

电子元件 电子行业 行业分析 数据分析 数据报告 行业报告
recommend-type

安享智慧理财测试项目Mock服务代码

安享智慧理财测试项目Mock服务代码
recommend-type

课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip

【资源说明】 课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip 【备注】 1、该项目是高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

华中科技大学电信专业 课程资料 作业 代码 实验报告-雷达与信息对抗-内含源码和说明书.zip

华中科技大学电信专业 课程资料 作业 代码 实验报告-雷达与信息对抗-内含源码和说明书.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。