resnet18+多头注意力机制代码
时间: 2023-07-12 17:04:54 浏览: 140
以下是使用ResNet18和多头注意力机制的代码示例:
```
import torch
import torch.nn as nn
class MultiHeadAttention(nn.Module):
def __init__(self, embed_dim, num_heads):
super(MultiHeadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.q_linear = nn.Linear(embed_dim, embed_dim)
self.k_linear = nn.Linear(embed_dim, embed_dim)
self.v_linear = nn.Linear(embed_dim, embed_dim)
self.fc = nn.Linear(embed_dim, embed_dim)
def forward(self, x):
batch_size = x.size(0)
# Project inputs to query, key, and value tensors
q = self.q_linear(x).view(batch_size, self.num_heads, self.head_dim)
k = self.k_linear(x).view(batch_size, self.num_heads, self.head_dim)
v = self.v_linear(x).view(batch_size, self.num_heads, self.head_dim)
# Compute self-attention scores
scores = torch.matmul(q, k.transpose(-2, -1)) / self.embed_dim**0.5
# Apply softmax activation function
scores = nn.functional.softmax(scores, dim=-1)
# Compute weighted sum of values using attention scores
weighted_values = torch.matmul(scores, v)
# Concatenate multi-head attention outputs
concat_heads = weighted_values.transpose(1, 2).contiguous().view(batch_size, -1, self.embed_dim)
# Apply fully connected layer to concatenated outputs
output = self.fc(concat_heads)
return output
class ResNet18(nn.Module):
def __init__(self, num_classes, embed_dim, num_heads):
super(ResNet18, self).__init__()
self.num_classes = num_classes
self.embed_dim = embed_dim
self.num_heads = num_heads
# Define ResNet18 layers
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
)
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
)
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * self.embed_dim, self.num_classes)
# Define multi-head attention layer
self.multi_head_attention = MultiHeadAttention(self.embed_dim, self.num_heads)
def forward(self, x):
# ResNet18 layers
x = self.conv1(x)
x = self.bn1(x)
x = nn.functional.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
# Multi-head attention layer
x = self.multi_head_attention(x)
# Fully connected layer
x = self.fc(x)
return x
```
在此代码中,我们首先定义了一个名为`MultiHeadAttention`的多头注意力机制模块。该模块接受一个张量作为输入,并计算该张量的自注意力表示。我们还定义了一个名为`ResNet18`的ResNet18模型,该模型使用多头注意力机制以更好地捕获输入数据中的关键信息。该模型在ResNet18的基础上添加了一个多头注意力层,该层将ResNet18的输出作为输入,并在完全连接层之前对其进行处理。
阅读全文