遗传算法求解20个城市tsp问题 matlab代码
时间: 2023-10-10 10:04:47 浏览: 103
以下是使用遗传算法求解20个城市TSP问题的MATLAB代码:
```
% 遗传算法求解20个城市TSP问题
clc;
clear;
% 生成20个城市的坐标
n = 20;
city = rand(n, 2);
% 计算城市之间的距离
dist = zeros(n);
for i = 1:n
for j = i+1:n
dist(i,j) = norm(city(i,:) - city(j,:));
dist(j,i) = dist(i,j);
end
end
% 遗传算法参数设置
popSize = 100;
maxGen = 500;
pc = 0.8;
pm = 0.1;
% 初始化种群
pop = zeros(popSize, n);
for i = 1:popSize
pop(i,:) = randperm(n);
end
% 迭代运行遗传算法
for gen = 1:maxGen
% 计算适应度值
fitness = zeros(popSize,1);
for i = 1:popSize
tour = pop(i,:);
fitness(i) = 1/sum(dist(tour(1:n-1),tour(2:n))) + 1/dist(tour(n),tour(1));
end
% 选择操作
prob = fitness/sum(fitness);
cumProb = cumsum(prob);
newPop = zeros(popSize, n);
for i = 1:popSize
r = rand;
j = find(cumProb >= r, 1);
newPop(i,:) = pop(j,:);
end
% 交叉操作
for i = 1:2:popSize
if rand < pc
tour1 = newPop(i,:);
tour2 = newPop(i+1,:);
pos = randperm(n-1,2);
pos = sort(pos);
temp = tour1(pos(1):pos(2));
tour1(pos(1):pos(2)) = tour2(pos(1):pos(2));
tour2(pos(1):pos(2)) = temp;
newPop(i,:) = tour1;
newPop(i+1,:) = tour2;
end
end
% 变异操作
for i = 1:popSize
if rand < pm
tour = newPop(i,:);
pos = randperm(n-1,2);
pos = sort(pos);
temp = tour(pos(1));
tour(pos(1)) = tour(pos(2));
tour(pos(2)) = temp;
newPop(i,:) = tour;
end
end
% 更新种群
pop = newPop;
end
% 寻找最优解
bestTour = pop(1,:);
bestDist = sum(dist(bestTour(1:n-1),bestTour(2:n))) + dist(bestTour(n),bestTour(1));
% 绘制最优路径
figure(1);
plot(city(:,1), city(:,2), 'o');
hold on;
plot(city([bestTour,n]), city([bestTour([2:n,1]),bestTour(1)]), '-');
title(sprintf('最优路径长度为 %.2f', bestDist));
xlabel('x坐标');
ylabel('y坐标');
```
代码中使用了一些MATLAB内置函数,如`randperm`、`norm`和`cumsum`等,具体用法可以查阅MATLAB官方文档。运行该代码可以得到最优路径长度和最优路径的可视化结果。
阅读全文