请写出ga-lstm的python代码
时间: 2023-09-17 10:07:51 浏览: 99
LSTM Python代码
5星 · 资源好评率100%
GA-LSTM 是一种基于遗传算法的长短期记忆网络,其代码实现相对较为复杂,以下是一个简单的示例:
```python
import numpy as np
import random
from keras.models import Sequential
from keras.layers import Dense, LSTM, Bidirectional
from keras.callbacks import EarlyStopping
from sklearn.metrics import mean_squared_error
class GA_LSTM:
def __init__(self, population_size, n_bits, n_epochs, n_layers, n_neurons):
self.population_size = population_size
self.n_bits = n_bits
self.n_epochs = n_epochs
self.n_layers = n_layers
self.n_neurons = n_neurons
def create_population(self):
population = []
for i in range(self.population_size):
network = []
for j in range(self.n_layers):
layer = []
for k in range(self.n_neurons):
weights = np.random.uniform(low=-1.0, high=1.0, size=self.n_bits)
layer.append(weights)
network.append(layer)
population.append(network)
return population
def decode_network(self, chromosome):
model = Sequential()
for i in range(self.n_layers):
if i == 0:
model.add(Bidirectional(LSTM(units=self.n_neurons, activation='tanh', input_shape=(1, self.n_bits))))
else:
model.add(Bidirectional(LSTM(units=self.n_neurons, activation='tanh')))
model.add(Dense(units=self.n_bits, activation='linear'))
model.layers[-1].set_weights(np.array(chromosome[i]))
model.compile(loss='mean_squared_error', optimizer='adam')
return model
def fitness_function(self, model, X_train, y_train, X_test, y_test):
early_stop = EarlyStopping(monitor='val_loss', patience=5, verbose=1)
model.fit(X_train, y_train, epochs=self.n_epochs, validation_data=(X_test, y_test), callbacks=[early_stop])
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
return 1 / (1 + mse)
def selection(self, population, fitness):
total_fitness = sum(fitness)
probabilities = [f / total_fitness for f in fitness]
selected_indices = np.random.choice(len(population), size=self.population_size, replace=True, p=probabilities)
selected_population = [population[i] for i in selected_indices]
return selected_population
def crossover(self, population):
new_population = []
for i in range(self.population_size):
parent1 = random.choice(population)
parent2 = random.choice(population)
child = []
for j in range(self.n_layers):
layer = []
for k in range(self.n_neurons):
if np.random.uniform() < 0.5:
layer.append(parent1[j][k])
else:
layer.append(parent2[j][k])
child.append(layer)
new_population.append(child)
return new_population
def mutation(self, population):
mutation_rate = 1 / (self.n_layers * self.n_neurons * self.n_bits)
for i in range(self.population_size):
for j in range(self.n_layers):
for k in range(self.n_neurons):
for l in range(self.n_bits):
if np.random.uniform() < mutation_rate:
population[i][j][k][l] = np.random.uniform(low=-1.0, high=1.0)
return population
def train(self, X_train, y_train, X_test, y_test):
population = self.create_population()
for i in range(self.n_epochs):
fitness = []
for j in range(self.population_size):
model = self.decode_network(population[j])
fitness.append(self.fitness_function(model, X_train, y_train, X_test, y_test))
print('Generation', i + 1, '- Best fitness:', max(fitness))
population = self.selection(population, fitness)
population = self.crossover(population)
population = self.mutation(population)
best_individual = population[fitness.index(max(fitness))]
best_model = self.decode_network(best_individual)
return best_model
```
上述代码使用 Keras 创建 GA-LSTM 神经网络,并使用遗传算法进行训练。其中,`create_population()` 方法用于创建初始种群,`decode_network()` 方法用于将染色体解码为神经网络并进行编译,`fitness_function()` 方法用于计算染色体的适应度,`selection()` 方法用于进行选择操作,`crossover()` 方法用于进行交叉操作,`mutation()` 方法用于进行变异操作。最后,`train()` 方法用于训练 GA-LSTM 网络,并返回最佳模型。
阅读全文