使用c++ 结构体,实现sjf短作业优先调度算法

时间: 2023-11-17 17:05:03 浏览: 32
好的,让我向您解释一下如何使用C结构体来实现SJF短作业优先调度算法。 首先,我们需要定义一个结构体来表示每个作业的信息,包括作业的名称、到达时间、服务时间和等待时间。结构体可以定义如下: ```c struct job { char name[10]; int arrive_time; int service_time; int waiting_time; }; ``` 然后,我们可以创建一个作业数组来存储所有的作业信息,并按照到达时间的顺序对它们进行排序。这可以通过一个输入函数来实现,如下所示: ```c void input_jobs(struct job jobs[], int n) { int i; for (i = 0; i < n; i++) { printf("请输入第 %d 个作业的名称、到达时间和服务时间: ", i + 1); scanf("%s %d %d", &jobs[i].name, &jobs[i].arrive_time, &jobs[i].service_time); } // 按照到达时间排序 qsort(jobs, n, sizeof(struct job), cmp_by_arrive_time); } ``` 在这个函数中,我们让用户逐个输入每个作业的名称、到达时间和服务时间,并按照到达时间进行排序。我们还需要定义一个函数 cmp_by_arrive_time() 来比较两个作业的到达时间: ```c int cmp_by_arrive_time(const void *a, const void *b) { const struct job *j1 = (const struct job *)a; const struct job *j2 = (const struct job *)b; return j1->arrive_time - j2->arrive_time; } ``` 接下来,我们可以实现SJF短作业优先调度算法。该算法基于服务时间来决定下一个要执行的作业。我们使用一个指针来指向当前时间点正在执行的作业,并将其初始化为 NULL。然后,我们遍历作业数组,如果遇到了一个到达时间小于等于当前时间并且服务时间比当前作业更短的作业,就将当前指针指向该作业。最后,我们更新当前时间,将等待时间和运行时间都累加到总和中,并输出结果。 完整的代码如下所示: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> struct job { char name[10]; int arrive_time; int service_time; int waiting_time; }; void input_jobs(struct job jobs[], int n); int cmp_by_arrive_time(const void *a, const void *b); int main() { int n, i, current_time = 0, total_waiting_time = 0, total_service_time = 0; struct job *current_job = NULL; struct job *jobs; printf("请输入作业个数: "); scanf("%d", &n); jobs = malloc(n * sizeof(struct job)); input_jobs(jobs, n); for (i = 0; i < n; i++) { if (current_job != NULL && current_time < jobs[i].arrive_time && total_service_time != 0) { // 暂停执行当前作业,更新等待时间和当前时间 current_job->waiting_time += (jobs[i].arrive_time - current_time); total_waiting_time += (jobs[i].arrive_time - current_time); current_time = jobs[i].arrive_time; } if (current_job == NULL || jobs[i].service_time < current_job->service_time) { // 切换到更短的作业 current_job = &jobs[i]; } current_job->service_time--; total_service_time++; if (current_job->service_time == 0) { // 当前作业执行完毕,更新当前时间 current_time += 1; current_job = NULL; } } printf("\n作业执行结果如下:\n"); for (i = 0; i < n; i++) { printf("作业名称:%s,等待时间:%d\n", jobs[i].name, jobs[i].waiting_time); } printf("平均等待时间:%f\n", (float)total_waiting_time / n); free(jobs); return 0; } void input_jobs(struct job jobs[], int n) { int i; for (i = 0; i < n; i++) { printf("请输入第 %d 个作业的名称、到达时间和服务时间: ", i + 1); scanf("%s %d %d", &jobs[i].name, &jobs[i].arrive_time, &jobs[i].service_time); } // 按照到达时间排序 qsort(jobs, n, sizeof(struct job), cmp_by_arrive_time); } int cmp_by_arrive_time(const void *a, const void *b) { const struct job *j1 = (const struct job *)a; const struct job *j2 = (const struct job *)b; return j1->arrive_time - j2->arrive_time; } ``` 希望这可以帮助您更好地理解如何使用C结构体来实现SJF短作业优先调度算法。

相关推荐

最新推荐

recommend-type

使用pybind11封装C++结构体作为参数的函数实现步骤

主要介绍了用pybind11封装C++结构体作为参数的函数实现步骤,本文分步骤通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

基于C#调用c++Dll结构体数组指针的问题详解

下面小编就为大家分享一篇基于C#调用c++Dll结构体数组指针的问题详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

C#调用C++DLL传递结构体数组的终极解决方案

主要介绍了C#调用C++DLL传递结构体数组的终极解决方案的相关资料,需要的朋友可以参考下
recommend-type

Python实现结构体代码实例

主要介绍了Python实现结构体代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

c++结构体string无法用malloc分配内存

c++结构体string无法用malloc分配内存,需要用用new来分配内存,malloc不会调用结构函数,结构体内的string不定长,不能动态分配内存。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。