dbscan聚类算法matlab主要的代码
时间: 2023-06-30 07:21:57 浏览: 124
以下是使用MATLAB实现DBSCAN聚类算法的示例代码:
```matlab
%% 加载数据
load fisheriris;
X = meas(:,3:4);
%% DBSCAN聚类
epsilon = 0.3;
MinPts = 5;
IDX = DBSCAN(X,epsilon,MinPts);
%% 绘制结果
figure;
gscatter(X(:,1),X(:,2),IDX)
title('DBSCAN聚类结果')
xlabel('花瓣长度')
ylabel('花瓣宽度')
function IDX = DBSCAN(X,epsilon,MinPts)
C = 0;
n = size(X,1);
IDX = zeros(n,1);
visited = false(n,1);
for i = 1:n
if ~visited(i)
visited(i) = true;
Neighbors = regionQuery(X,i,epsilon);
if length(Neighbors) < MinPts
IDX(i) = -1;
else
C = C + 1;
expandCluster(X,i,Neighbors,C,epsilon,MinPts,visited,IDX);
end
end
end
end
function expandCluster(X,i,Neighbors,C,epsilon,MinPts,visited,IDX)
IDX(i) = C;
k = 1;
while true
j = Neighbors(k);
if ~visited(j)
visited(j) = true;
Neighbors2 = regionQuery(X,j,epsilon);
if length(Neighbors2) >= MinPts
Neighbors = [Neighbors setdiff(Neighbors2,Neighbors)];
end
end
if IDX(j) == 0
IDX(j) = C;
end
k = k + 1;
if k > length(Neighbors)
break;
end
end
end
function Neighbors = regionQuery(X,i,epsilon)
distances = pdist2(X,X(i,:));
Neighbors = find(distances <= epsilon);
end
```
该算法首先加载数据,然后调用`DBSCAN`函数进行聚类。`DBSCAN`函数使用epsilon和MinPts参数来定义聚类。然后使用`regionQuery`函数查找每个对象的邻居。接下来,使用`expandCluster`函数将对象添加到聚类中。最后,在绘图中使用`gscatter`函数绘制聚类结果。
请注意,这只是一个示例代码,您需要根据您的数据和需要进行适当的修改。
阅读全文