复杂网络中所有节点接近中心性的python代码
时间: 2024-02-22 20:56:21 浏览: 106
所有节点的接近中心性可以通过计算每个节点到其他节点的平均最短路径长度来衡量。下面是计算所有节点接近中心性的 Python 代码:
```python
import networkx as nx
# 构建一个复杂网络
G = nx.powerlaw_cluster_graph(100, 5, 0.3)
# 计算每个节点的接近中心性
closeness_centrality = nx.closeness_centrality(G)
# 输出结果
for node, closeness in closeness_centrality.items():
print("节点", node, "的接近中心性为:", closeness)
```
其中,`nx.powerlaw_cluster_graph(100, 5, 0.3)` 表示构建一个包含 100 个节点、每个节点有 5 条边、随机重连概率为 0.3 的无标度网络。您可以根据实际需要调整网络的大小和参数。
相关问题
复杂网络中所有节点接近中心性的平均值python代码
可以使用 `networkx` 库来计算复杂网络中节点的接近中心性(closeness centrality),并计算所有节点的接近中心性的平均值。
以下是示例代码:
```python
import networkx as nx
# 构造一个复杂网络
G = nx.Graph()
G.add_edges_from([(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 5), (4, 6), (5, 6)])
# 计算所有节点的接近中心性
closeness = nx.closeness_centrality(G)
# 计算所有节点的接近中心性的平均值
avg_closeness = sum(closeness.values()) / len(closeness)
print("所有节点的接近中心性:", closeness)
print("所有节点的接近中心性的平均值:", avg_closeness)
```
在上面的代码中,我们首先构造了一个复杂网络 `G`,然后使用 `nx.closeness_centrality()` 函数计算了网络中所有节点的接近中心性。最后,我们计算了所有节点的接近中心性的平均值,并打印出结果。
计算下面复杂网络拓扑属性的代码:1邻接矩阵 2-每个节点的节点度 3.网络的平均节点度 4节点度分布 5-拉普拉斯矩阵 6网络密度 7-所有最短路径 8.每个节点的偏心度 9网络半径 10网络直径 11平均最短路径 12.每个节点的接近程度 13-找到并绘制混合模式的程度相关性 14-同时找到邻接矩阵和拉普拉斯矩阵的特征值和特征向量
这是一个十分复杂的问题,需要用到多个库和算法来实现。下面是一些可能用到的库和算法:
1. 邻接矩阵和节点度:使用 NetworkX 库来创建图形对象,然后使用其函数来计算邻接矩阵和节点度。
``` python
import networkx as nx
# 创建图形对象
G = nx.Graph()
# 添加节点和边
G.add_nodes_from([1, 2, 3])
G.add_edges_from([(1, 2), (2, 3)])
# 计算邻接矩阵和节点度
adj_matrix = nx.adjacency_matrix(G).todense()
degrees = dict(G.degree())
```
2. 平均节点度:使用 NetworkX 库中的函数来计算平均节点度。
``` python
avg_degree = sum(degrees.values()) / len(degrees)
```
3. 节点度分布:使用 Matplotlib 库来绘制节点度的分布图。
``` python
import matplotlib.pyplot as plt
# 获取节点度列表
degree_list = list(degrees.values())
# 绘制直方图
plt.hist(degree_list, bins=range(max(degree_list)+2))
plt.show()
```
4. 拉普拉斯矩阵:使用 Scipy 库中的函数来计算拉普拉斯矩阵。
``` python
import scipy.sparse as sp
# 计算拉普拉斯矩阵
laplacian = sp.csgraph.laplacian(adj_matrix)
```
5. 网络密度:使用 NetworkX 库中的函数来计算网络密度。
``` python
density = nx.density(G)
```
6. 所有最短路径:使用 NetworkX 库中的函数来计算所有最短路径。
``` python
shortest_paths = dict(nx.all_pairs_shortest_path(G))
```
7. 偏心度:使用 NetworkX 库中的函数来计算每个节点的偏心度。
``` python
eccentricities = nx.eccentricity(G)
```
8. 网络半径和直径:使用 NetworkX 库中的函数来计算网络的半径和直径。
``` python
radius = nx.radius(G)
diameter = nx.diameter(G)
```
9. 平均最短路径:使用 NetworkX 库中的函数来计算平均最短路径长度。
``` python
avg_shortest_path = nx.average_shortest_path_length(G)
```
10. 接近程度:使用 NetworkX 库中的函数来计算每个节点的接近程度。
``` python
closeness = nx.closeness_centrality(G)
```
11. 混合模式的程度相关性:使用 Pandas 库来加载数据集,并使用 Seaborn 库来绘制混合模式的程度相关性图。
``` python
import pandas as pd
import seaborn as sns
# 加载数据集
data = pd.read_csv('data.csv')
# 绘制混合模式的程度相关性图
sns.jointplot(x='degree', y='clustering', data=data, kind='hex')
```
12. 特征值和特征向量:使用 Scipy 库中的函数来计算邻接矩阵和拉普拉斯矩阵的特征值和特征向量。
``` python
import scipy.linalg as la
# 计算邻接矩阵和拉普拉斯矩阵的特征值和特征向量
adj_eigvals, adj_eigvecs = la.eig(adj_matrix)
lap_eigvals, lap_eigvecs = la.eig(laplacian)
```
阅读全文