GWOEPD算法的matlab代码
时间: 2023-09-03 18:08:11 浏览: 166
以下是GWO-EPD算法的Matlab代码:
```
function [bestSol, bestFit] = GWO_EPD(fobj, dim, lb, ub, maxIter, N, C, eps)
% GWO_EPD: Grey wolf optimizer with enhanced prey death mechanism
%
% INPUTS
% fobj: objective function
% dim: dimensionality of the problem
% lb: lower bound of the search space
% ub: upper bound of the search space
% maxIter: maximum number of iterations
% N: number of grey wolves
% C: constant parameter of the prey death mechanism
% eps: small constant to avoid division by zero
%
% OUTPUTS
% bestSol: best solution found
% bestFit: best fitness value found
%
% Reference:
% Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014).
% Grey Wolf Optimizer: A New Optimization Algorithm Inspired by Wolf Pack Behavior.
% Advances in Engineering Software, 69, 46-61.
% Initialize the grey wolves
alpha.pos = lb + rand(1, dim) .* (ub - lb);
alpha.fit = fobj(alpha.pos);
beta.pos = lb + rand(1, dim) .* (ub - lb);
beta.fit = fobj(beta.pos);
delta.pos = lb + rand(1, dim) .* (ub - lb);
delta.fit = fobj(delta.pos);
for i = 1:N
wolf(i).pos = lb + rand(1, dim) .* (ub - lb);
wolf(i).fit = fobj(wolf(i).pos);
end
% Main loop
for t = 1:maxIter
% Update alpha, beta, and delta
for i = 1:N
if wolf(i).fit < alpha.fit
delta = beta;
beta = alpha;
alpha = wolf(i);
elseif wolf(i).fit < beta.fit
delta = beta;
beta = wolf(i);
elseif wolf(i).fit < delta.fit
delta = wolf(i);
end
end
% Update the position of each wolf
for i = 1:N
A = 2 * C * rand(1, dim) - C; % Equation (15)
D_alpha = abs(C * alpha.pos - wolf(i).pos);
X1 = alpha.pos - A .* D_alpha; % Equation (17)
A = 2 * C * rand(1, dim) - C; % Equation (15)
D_beta = abs(C * beta.pos - wolf(i).pos);
X2 = beta.pos - A .* D_beta; % Equation (18)
A = 2 * C * rand(1, dim) - C; % Equation (15)
D_delta = abs(C * delta.pos - wolf(i).pos);
X3 = delta.pos - A .* D_delta; % Equation (19)
wolf(i).pos = (X1 + X2 + X3) / 3; % Equation (16)
% Apply boundary constraints
wolf(i).pos(wolf(i).pos < lb) = lb(wolf(i).pos < lb);
wolf(i).pos(wolf(i).pos > ub) = ub(wolf(i).pos > ub);
% Evaluate the fitness of the new position
wolf(i).fit = fobj(wolf(i).pos);
end
% Apply the enhanced prey death mechanism
for i = 1:N
if wolf(i).fit > alpha.fit + eps % Equation (20)
wolf(i).pos = alpha.pos + rand(1, dim) .* (beta.pos - delta.pos);
wolf(i).fit = fobj(wolf(i).pos);
end
end
% Update the best solution found so far
[bestFit, bestIdx] = min([wolf.fit]);
bestSol = wolf(bestIdx);
% Display the iteration and the best fitness value found so far
fprintf('Iteration %d: Best fitness value = %.4f\n', t, bestFit);
end
end
```
其中,fobj是目标函数,dim是问题的维度,lb和ub是搜索空间的下限和上限,maxIter是最大迭代次数,N是狼群中狼的数量,C是常数参数,eps是避免除以零的小常数。函数的输出是最佳解和最佳适应度值。
阅读全文