torch.backends.cudnn.benchmark = true
时间: 2023-04-24 11:02:40 浏览: 119
`torch.backends.cudnn.benchmark = true`的作用是启用cudnn的自动寻找最适合当前配置的高效卷积算法,以优化深度神经网络的训练或推理速度。在使用CUDA加速深度学习时,开启此选项可以加速计算。
相关问题
torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True
`torch.backends.cudnn.benchmark = True` 和 `torch.backends.cudnn.deterministic = True` 是用于设置PyTorch在使用CUDA加速时的一些优化选项。
- `torch.backends.cudnn.benchmark = True` :当设置为True时,PyTorch会在每次运行时自动寻找最适合当前硬件的卷积实现算法,并进行优化。这样可以加速模型的训练和推断过程。然而,由于寻找最佳算法需要额外的计算开销,因此在输入大小不变的情况下,首次运行可能会比后续运行慢一些。如果输入大小经常变化,建议将此选项设为True,以获得最佳性能。
- `torch.backends.cudnn.deterministic = True` :当设置为True时,PyTorch的卷积操作将以确定性模式运行,即给定相同的输入和参数,输出将始终相同。这对于确保结果的可重复性很重要,尤其是在进行模型训练和验证时。然而,由于确定性模式可能会带来一些性能损失,因此在不需要结果可重复性的情况下,可以将此选项设置为False。
这两个选项可以根据具体场景和需求进行设置。`torch.backends.cudnn.benchmark` 用于自动选择最佳卷积实现算法以提高性能,而 `torch.backends.cudnn.deterministic` 用于确保结果的可重复性。根据你的需求,你可以根据情况启用或禁用它们。
代码解释# Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz) else: save_img = True dataset = LoadImages(source, img_size=imgsz)
这段代码是用来设置数据加载器的。如果是使用webcam(摄像头)作为输入,就设置view_img为True,同时启用torch.backends.cudnn.benchmark,以加速不变图像大小的推断。然后使用LoadStreams来加载数据集,设置图像大小为imgsz。如果不是使用webcam作为输入,就设置save_img为True,使用LoadImages来加载数据集,同样设置图像大小为imgsz。
阅读全文